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! Mueller-Navelet Jets

! Definition

! BFKL resummation

! Properties: K-factor, decorrelations

! γ∗-p Deep Inelastic Scattering

! Geometric scaling at small Bjorken-x

! Theoretical explanation (BFKL and saturation)

! Geometric Scaling in Mueller-Navelet Jets



Mueller-Navelet Jets

! Inclusive production of two jets separated by large rapidity

interval in p-p or p-p̄ collisions

Y = η1 − η2

= ln
xAxBs

k1k2
" 1



Cross Section

! Cross section

dσ

dxAdxBd2k1d2k2
= feff(xA, µ2)feff(xB, µ2)

dσ̂

d2k1d2k2

! Choose xA, xB to be “large”. Say ∼ O(0.1)

Parton distributions are known

! Large logarithms of Y = ln ŝ/k2 in partonic cross section

! Rapidity strong ordering gives dominant contribution

η1 " η1′ " ... and −η2 " −ηN ′ " ...



Resummation

! Born level (no minijet)

Back to back jets : k1 = −k2

In terms of Y : σ̂ ∼ O(1)

! One minijet ! Decorrelation : k1 $= −k2

In terms of Y : σ̂ ∼ O(Y )

! Two minijets ! More decorrelation

In terms of Y : σ̂ ∼ O(Y 2)

! Integrate over minijet phase space and sum



BFKL

! Resummed cross section

dσ̂

d2k1d2k2
∼ α2

s

k2
1k

2
2

f(Y, k1, k2)

! f satisfies BFKL equation

∂f(k1, k2, Y )

∂Y
=

∫
d2!M(k1, k2, !)f(k1, !, Y )− virtual

Linear evolution equation in Y

Local in Y , nonlocal kernel in transverse momenta

! At large Y

f ∼ 1

k1k2
exp(ωPY )



Properties

Properties-signatures of MN jets (hence BFKL)

! Exponential in Y K-factor (Mueller, Navelet)

! Momentum decorrelation (Del Duca, Schmidt)

! Angular decorrelations (Sabio Vera, Schwennsen)
A. Sabio Vera, F. Schwennsen / Nuclear Physics B 776 (2007) 170–186 181

Fig. 7. 〈cos 2φ〉
〈cosφ〉 = C2

C1
as obtained from Fig. 5 with LO (solid), NLO (dashed) and collinearly resummed (dash-dotted)

BFKL kernels.

Tevatron data for the average of the azimuthal angle between the two tagged Mueller–Navelet
jets, 〈cosφ〉 = C1/C0 and 〈cos 2φ〉 = C2/C0, and compare them with our resummed prediction
developed in the previous section using Eq. (15), which evaluates the angular mean values in
terms of the coefficients Cn in Eq. (8). For comparison we also show the LO and standard NLO
BFKL results without any further resummation of higher order terms. As a general trend a de-
crease of the amount of correlation as Y gets larger is obtained, and it can be seen that the NLO
corrections to the BFKL kernel change the LO results significantly. For the particular cuts at the
Tevatron, where the transverse momentum for one jet is 20 GeV and for the other 50 GeV, it
turns out that the NLO calculation in the MS-scheme provides the best fit to the data. However,
this prediction is very instable under a change of renormalization scheme and we cannot trust it.
A first hint of this point is that if we change from MS to GB scheme we notice that the NLO
result varies more than the LO one. Meanwhile, the resummed prediction does not change. This
can be clearly seen in Fig. 6 where we have calculated 〈cosφ〉 in both renormalization schemes.

It is important to indicate that the convergence of our observables is poor whenever the co-
efficient associated to zero conformal spin, C0, is involved. If we eliminate this coefficient by
calculating the ratios defined in Eq. (16) then the only dependence is on the higher n’s and the
predictions are very stable under the introduction of higher order corrections. This is illustrated
in Fig. 7 where we can observe that the predictions at LO, NLO and with a resummed kernel for
〈cos 2φ〉
〈cosφ〉 = C2

C1
are very similar.

We have also studied the full angular dependence by investigating the differential angular
distribution as given in Eq. (17). The D∅ Collaboration published their measurement of this
normalized angular distribution for different rapidity differences in Ref. [21]. In Fig. 8 we com-
pare this measurement with the predictions obtained in our approach using an LO, NLO, and
resummed BFKL kernel. This comparison is very useful to further justify the need of a collinear
resummation to all orders. The NLO result here presented is again in the MS-scheme, when we
switch to the GB-scheme the plot completely changes becoming even negative as we approach
φ ∼ ±π . This is not the case in the collinearly improved calculation. We can also see that the
fit to the data in the resummed case is much better than at LO and we have checked that the
analysis of χ2/n.d.f. for the resummed kernel improves for larger rapidities. Although for the
low rapidities measured at the Tevatron our calculation is not close to the data, the fact that the
shape of the distribution is the correct one is very reassuring. It would be very interesting to have

Cn = 〈cos nφ〉
φ = !(k1, k2)



DIS - Scaling

! Cross section σ(x, Q2, Λ) in γ∗-p DIS. Data for x < 10−2

(Golec-Biernat, Kwieciński, Staśto)
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γ∗p ενεργός διατομή συναρτήσει Q2/Q2s
(Golec-Biernat, Kwieciński, Staśto)
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Geometric scaling

σ ∼ 1

Λ2
f(Q2/Q2

s)

Saturation momentum

Q2
s ∼ Λ2x−λ



Saturation - Unitarity

! Frame : γ∗(Q) → qq̄(r) → interaction with proton

! At small-x saturated proton wavefunction

! Dipole - proton cross section unitarizes

Satisfies BFKL + nonlinear equation (Balitsky, Kovchegov)



Scaling

Scaling above Qs (Iancu, Itakura, McLerran / Mueller, DNT)

! Eigenfunctions are pure powers

A single one selected asymptotically

σdp ∼ exp[χ(γs) ln(1/x)](r2Λ2)1−γs ∼ (r2 Λ2x−λ
︸ ︷︷ ︸

Q2
s

)1−γs

! Approximate scaling with running coupling

NLO computation of λ ( 0.3 (DNT) in agreement with fits

! Scaling in Q2 after convoluting with γ∗ wavefunction

! Dynamically generated scale sets the scale for observables



MN Jets and Unitarity

! Inclusive dijet cross section should respect unitarity limits

(exchange of many ladders)

! Not a total cross section but difficult to imagine otherwise

! More established for single forward jet (...)

dσ

dηd2k
∼ 1

k2
xGA(x, k2)

∫
d2r exp[−ik·r]∇2

rσgg−B(r)

σgg−B(r) unitarizes too

Not virtual gluonic dipole. From amplitude × amplitude∗

! Conjecture expression involving σgg−gg(r1, r2) (Marquet)

Not necessary for our purposes



MN Jets and Scaling

! Integrate jet transverse momenta above Q1, Q2

dσ

dxAdxB
= Feff

α2
s

Q2
2

∫
dγ

2πi
exp[ᾱsχ(γ)Y ]

(
Q2

2

Q2
1

)1−γ

! Saddle point and vanishing exponent (Q2 + Q1) !

dσ

dxAdxB
∼ Feff

1

Q2
2

(
Q2

2 eλ(Y−Y0)

Q2
1

)1−γs

with γs = 0.372

Geometric scaling. Similar to DIS : Λ → Q2



MN Jets

! Q2 will be large

(+) Large initial saturation scale

(−) Cross section ∼ 1/Q2
2

! Cannot vary total energy energy s

• Keep kinematics of the softer (2) jet fixed

• Vary kinematics of harder (1) jet so that

xA = Q1eη1/
√

s = fixed



Conclusion

! Inclusive cross section for production of two jets very

separated in rapidity should exhibit geometric scaling

! Particular case of strong momentum decorrelation
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