Geometric Scaling in Mueller-Navelet Jets

Dionysis Triantafyllopoulos

ECT*, Trento, Italy

With: E. lancu and M.S. Kugeratski

Outline

- Mueller-Navelet Jets
 - Definition
 - BFKL resummation
 - Properties: K-factor, decorrelations
- ▶ γ^* -p Deep Inelastic Scattering
 - Geometric scaling at small Bjorken-x
 - Theoretical explanation (BFKL and saturation)

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

Geometric Scaling in Mueller-Navelet Jets

Mueller-Navelet Jets

 Inclusive production of two jets separated by large rapidity interval in *p*-*p* or *p*-*p* collisions

 $Y = \eta_1 - \eta_2$ $= \ln \frac{x_{\rm A} x_{\rm B} s}{k_1 k_2} \gg 1$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

Cross Section

Cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_{\mathrm{A}}\mathrm{d}x_{\mathrm{B}}\mathrm{d}^{2}\boldsymbol{k}_{1}\mathrm{d}^{2}\boldsymbol{k}_{2}} = f_{\mathrm{eff}}(x_{\mathrm{A}},\mu^{2})f_{\mathrm{eff}}(x_{\mathrm{B}},\mu^{2})\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}^{2}\boldsymbol{k}_{1}\mathrm{d}^{2}\boldsymbol{k}_{2}}$$

- Choose $x_{\rm A}, x_{\rm B}$ to be "large". Say $\sim \mathcal{O}(0.1)$ Parton distributions are known
- Large logarithms of $Y = \ln \hat{s}/k^2$ in partonic cross section

► Rapidity strong ordering gives dominant contribution $\eta_1 \gg \eta_{1'} \gg \dots$ and $-\eta_2 \gg -\eta_{N'} \gg \dots$

Resummation

- Born level (no minijet)
 Back to back jets : k₁ = −k₂
 In terms of Y : σ̂ ~ O(1)
- One minijet → Decorrelation : k₁ ≠ −k₂
 In terms of Y : σ̂ ~ O(Y)
- ► Two minijets → More decorrelation In terms of Y : σ̂ ~ O(Y²)
- Integrate over minijet phase space and sum

Resummed cross section

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}^2\boldsymbol{k}_1\mathrm{d}^2\boldsymbol{k}_2} \sim \frac{\alpha_s^2}{k_1^2k_2^2} f(Y, \boldsymbol{k}_1, \boldsymbol{k}_2)$$

 \blacktriangleright f satisfies BFKL equation

$$\frac{\partial f(\boldsymbol{k}_1, \boldsymbol{k}_2, Y)}{\partial Y} = \int \mathrm{d}^2 \boldsymbol{\ell} \, \mathcal{M}(\boldsymbol{k}_1, \boldsymbol{k}_2, \boldsymbol{\ell}) f(\boldsymbol{k}_1, \boldsymbol{\ell}, Y) - \text{virtual}$$

Linear evolution equation in Y

Local in Y, nonlocal kernel in transverse momenta

• At large Y

$$f \sim \frac{1}{k_1 k_2} \exp(\omega_{\mathbb{P}} Y)$$

<ロ> <再> < 再> < => < => < => < => < <</p>

Properties

Properties-signatures of MN jets (hence BFKL)

- Exponential in Y K-factor (Mueller, Navelet)
- Momentum decorrelation (Del Duca, Schmidt)
- Angular decorrelations (Sabio Vera, Schwennsen)

DIS - Scaling

▶ Cross section $\sigma(x, Q^2, \Lambda)$ in γ^* -p DIS. Data for $x < 10^{-2}$

Geometric scaling

$$\sigma \sim \frac{1}{\Lambda^2} f(Q^2/Q_s^2)$$

Saturation momentum

$$Q_s^2 \sim \Lambda^2 x^{-\lambda}$$

イロン 不良 アイヨン イヨン ヨー ろくの

Saturation - Unitarity

- \blacktriangleright Frame : $\gamma^*(Q) \rightarrow q\bar{q}({\bm r}) \rightarrow$ interaction with proton
- At small-x saturated proton wavefunction
- Dipole proton cross section unitarizes
 Satisfies BFKL + nonlinear equation (Balitsky, Kovchegov)

Scaling

Scaling above Q_s (lancu, Itakura, McLerran / Mueller, DNT)

Eigenfunctions are pure powers
 A single one selected asymptotically

 $\sigma_{\rm dp} \sim \exp[\chi(\gamma_s)\ln(1/x)](r^2\Lambda^2)^{1-\gamma_s} \sim (r^2 \underbrace{\Lambda^2 x^{-\lambda}}_{Q_s^2})^{1-\gamma_s}$

- ▶ Approximate scaling with running coupling NLO computation of $\lambda \simeq 0.3$ (DNT) in agreement with fits
- \blacktriangleright Scaling in Q^2 after convoluting with γ^* wavefunction
- Dynamically generated scale sets the scale for observables

MN Jets and Unitarity

- Inclusive dijet cross section should respect unitarity limits (exchange of many ladders)
- Not a total cross section but difficult to imagine otherwise
- More established for single forward jet (...)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\eta\mathrm{d}^{2}\boldsymbol{k}}\sim\frac{1}{k^{2}}\,xG_{\mathrm{A}}(x,k^{2})\int\mathrm{d}^{2}\boldsymbol{r}\,\exp[-\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}]\nabla_{\boldsymbol{r}}^{2}\sigma_{\mathrm{gg-B}}(\boldsymbol{r})$$

 $\sigma_{\rm gg-B}({\bm r})$ unitarizes too Not virtual gluonic dipole. From amplitude \times amplitude*

► Conjecture expression involving σ_{gg-gg}(r₁, r₂) (Marquet) Not necessary for our purposes

MN Jets and Scaling

Integrate jet transverse momenta above Q₁, Q₂

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_{\mathrm{A}}\mathrm{d}x_{\mathrm{B}}} = F_{\mathrm{eff}} \frac{\alpha_s^2}{Q_2^2} \int \frac{\mathrm{d}\gamma}{2\pi \mathrm{i}} \exp[\bar{\alpha}_s \chi(\gamma) Y] \left(\frac{Q_2^2}{Q_1^2}\right)^{1-\gamma}$$

▶ Saddle point and vanishing exponent $(Q_2 \ll Q_1) \rightsquigarrow$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_{\mathrm{A}}\mathrm{d}x_{\mathrm{B}}} \sim F_{\mathrm{eff}} \frac{1}{Q_2^2} \left(\frac{Q_2^2 \,\mathrm{e}^{\lambda(Y-Y_0)}}{Q_1^2}\right)^{1-\gamma_s} \quad \mathrm{with} \quad \gamma_s = 0.372$$

Geometric scaling. Similar to DIS : $\Lambda \rightarrow Q_2$

MN Jets

- Q_2 will be large
 - $\left(+\right)$ Large initial saturation scale
 - (-) Cross section $\sim 1/Q_2^2$
- Cannot vary total energy energy s
 - Keep kinematics of the softer (2) jet fixed

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

• Vary kinematics of harder (1) jet so that

$$x_{\rm A} = Q_1 \mathrm{e}^{\eta_1} / \sqrt{s} = \mathsf{fixed}$$

Conclusion

 Inclusive cross section for production of two jets very separated in rapidity should exhibit geometric scaling

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

Particular case of strong momentum decorrelation

E. lancu, M.S. Kugeratski, D.N. Triantafyllopoulos Geometric Scaling in Mueller-Navelet Jets

arXiv:0802.0343 [NPA]