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Motivations

• Thestandard model of Few-Nucleon Systems, where nucleon

and pion degrees of freedom are taken into account, is

already at a very sophisticated stage, and many efforts are

presently carried on in order to retain all the general

principlescompatible with a theory where a fixed number of

constituents is acting.

• On top of this, including relativity (as much as possible)

represents an important goal, in view of the fact that i) the

underlying theory is a local relativistic field theory, after all,

and ii) the extraction of unambiguous signatures beyond the

standard model of Few-Nucleon Systems could be affected by

relativistic effects.

• Field theoretical approaches based on the Bethe-Salpeter

equations have been highly developed for two-nucleon

System (Tjon, Gross,...), in particular within the so-called

quasi-potential approximation (3D!), and for the trinucleon

System many efforts are in progress.
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⋆ Aim : to construct a relativistic approach for Few-Nucleon

System that i) retains the wholesuccessful phenomenology already

developed and ii) includes,in a non perturbative way, relativistic

features, requested by Poincaré covariance.

⋆⋆ A role for antinucleons ?

⋆ ⋆⋆ Electron scattering by Few-nucleon Systems yields a

clean play ground for testing theoretical approaches.

Caveats: isobar configurations, MEC ....
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Relativistic Hamiltonian Dynamics: a flash

• A reasonable compromise: i) fulfilling Poincaré covariance in

a non perturbative way; ii) embedding the whole successful

non relativistic phenomenology; iii) feasible numerical

calculations; iv) fixed number of constituents; v) large class

of allowed interactions.

After S.J. Brodsky, H.C. Pauli and S.S Pinsky, Phys. Rep.301, 299 (1998).

• Diracproposed three forms for the the so-called Relativistic

Hamiltonian Dynamics:Instant Form, Front Formor

Light-Front Form(most widely adopted, a reduced impact by

dynamics and→ light-cone DIS ),Point Form (Dirac, Rev.

Mod. Phys. 21 (1949) 392)
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• Symmetries of the ”initial” hypersurface:the properties of

invariance of the hypersurface, where the interacting System

is ”sitting” at τ = 0 (τ is the variable that labels the evolution

of the System under the action of a Hamiltonian operator,

containing the interaction) allows one to separatethe 10

generators of the Poincaré groupin two sets:the kinematical

generators(that leave the initial hypersurface unchanged) and

the dynamical ones(that move the System outside the initial

hypersurface).

• Explicit construction of 10 generators, given the mass of the

interacting System, (see the Bakamjian-Thomas approach PR

92 (1953) 1300)

• For A≥ 3, cluster separability(→ Packing Operators) must

be implemented: macroscopic locality instead of the

microscopic one, namely observables separated by space-like

distances must commute(see. N.N. Sokolov Dokl. Akad.

Nauk. 233 (1977) 575)

Summarizing : RHD rigorously fulfills the Poincaré covariance

and, in some sense, falls between non-relativistic quantum

mechanics and local relativistic field theory
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Advantages and Drawbacks of choosing

the Light front

Good news

• Maximal number of kinematical generators: 7.

• LF boosts form a subgroup, then the corresponding ”Wigner

rotations” shrink to unity. This property allows one to

separate intrinsic features of the System from the CM ones,

in strict analogy with non relativistic theories.

• P+ ≥ 0. This produces a trivial vacuum in LF field theory

with massive constituents. The physical vacuum coincides

with the mathematical one, and therefore one can construct a

meaningful Fock expansion from the LF vacuum.

Bad news

• Rotations around⊥ axes are dynamical.

• The caseP+ = 0 has to be carefully considered in theories

with massless particles (zero-mode problem).

A possible approach for Nuclei: a Bakamjian-Thomas

construction with a fixed number of constituents.

N.B. All the constituents are on their own mass shell (sharp

difference from the explicitly covariant theory, more familiar...),

then:P µ 6=
P

i pµ
on. But, this on-mass-shell constraint allows one

to define intrinsic variables as in the non relativistic case.
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Electromagnetic Current Operator

for Interacting Systems

in the Light-Front Hamiltonian Dynamics

⋆To constructa current operatorJµ for an Interacting System

that fulfills i) Poincaŕe, parity and time reversal covariance, ii)

Hermiticity (F. Lev, E. Pace, G.S. Nucl. Phys.A 641, 229 (1998)),

⋆⋆one can translate those general properties into constraints on a

suitable auxiliary operator,jµ, acting on intrinsic variables.

⋆⋆⋆ExtendedPoincaŕe covarianceof the EM current operator

Jµ leads to therotational covariance, around a given axis, of the

auxiliary operatorjµ. The following analysis is performed in a

Breit frame with the z-axis along the momentum transfer.
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In a Breit frame where

q⊥ = 0 ⇒ q
+ 6= 0 and one can also choose

Pf⊥ = Pi⊥ = 0

The auxiliary operator acting on the intrinsic variables is

jµ(q, Mf , Mi) ≡ 〈Pf⊥, P+
f |Πf Jµ(0) Πi|Pi⊥, P+

i 〉

whereΠ ≡ projector onto thestates of the (initial or final) System

If Jµ(0) is Poincaŕe covariant, thenjµ(q,Mf , Mi) is rotationally

covariant aroundbq and

viceversa

For an interacting System, a sensible approximation toJµ(0) can

be constructed through a suitable model for the auxiliary operator

jµ, starting with operators rotationally covariant.

In general

from Hermiticity

jµ
if (qêz) =

J µ
if (qêz)

2
+

z }| {
Lµ

ν [rx(−π)] eıπSx

J ν
if (qêz)

∗

2
e−ıπSx

i.e.
h
jµ
if (qêz)

i
∗

= jµ
fi(−qêz)

J µ
if is a suitable approximation...

~S ≡ the LF-spin operator of the System as whole, it acts on the

”internal” space and is unitarily related to the standard angular

momentum operator through the Melosh operators
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⋆ The currentjµ contains a many-body contribution produced by

the presence of the dynamical operatorSx

⋆⋆ What aboutCurrent ConservationandCharge

Normalization?

In the chosen Breit frame,CC andCN impose

CC : j+
if (qêz) = j−if (qêz)

CN : j+
ii (0) = e Πi

Are those constrains satisfied by the simple approx.

J µ
if (qêz) = Πf Jµ

free(0) Πi ?

In elastic processes, the Current Conservation follows from

Poincaŕe covariance and Hermiticity(!) only.

Then

J µ
ii (qêz) = Πi Jµ

free(0) Πi

is acceptable ,

trivially one can show thatj+
if (qêz) = j−if (qêz), within such an

approximation
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For fulfilling the Charge Normalization, one must have:

J−

ii (qêz) = J+
ii (qêz)

but Πi J+
free(0) Πi 6= Πi J−

free(0) Πi

N.B.: for evaluating of the EM form factors onlyj+
ii (qêz) and

j
1(2)
ii (qêz) are relevant.

To satisfy Poincaŕe, Hermiticity, CC and CN, one can choose, as a

first step,

jµ(qêz) =
J µ(qêz)

2
+ Lµ

ν [rx(−π)] eıπSx
J ν(qêz)

∗

2
e−ıπSx

with

J+(qêz) = J−(qêz) = ΠJ+
free(0)Π

J 1(2)(qêz) = ΠJ
1(2)
free(0)Π

For a nucleus

Jµ
free(0) =

P
i
Jµ

pi(0)(1 + τ3)/2 + Jµ
ni(0)(1 + τ3)/2

Jµ
N = −F2N (pµ + p′µ)/2M + γµ(F1N + F2N )

N.B.: the presence ofSx introduces a class of two-body currents.

More two-body currents in what follows.
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Bakamjian-Thomas-allowed Mass Operators

For evaluating matrix elements of the EM Current, it is necessary

to have eigenstates of the interacting System, that properly

transform under the Poincaré group action.

The Bakamjian-Thomas construction suggests a necessary (not

sufficient) condition (cf , e.g.,B.D. Keister and W. PolyzouAdv.

Nucl. Phys.20, (1991)) for modeling a suitable mass operator,M :

the interaction term (e.g. the difference between M and the free

mass, i.e.,V = M − M0) must depend upon intrinsic variables

combined in scalar products.

More formally[ ~BLF , V ] = [~Sfree, V ] = [P⊥, V ] = [P+, V ] = 0

where~BLF are the LF-boosts,~Sfree ≡ the angular momentum

operator for the non interacting case (note thatS2
free = S2

int and

Sfree,z = Sint,z , i.e. the eigenvalues ofS2
free andSfree,z can be

used for labeling the eigenstates of the interacting System)

Then, anynon relativistic Mass operator, fulfilling the above

constraints, can be adopted as an effective approximation of the

true (?!) Mass operator, and embedded in a Bakamjian-Thomas

construction.

Then the eigenfunctions to be used in a LF calculations, can be

”non relativistic solutions”, adopting standardClebsch-Gordan

machinery, but introducingMelosh Rotations, that relate LF

angular momenta to the standard ones.
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Deuteron EM observables: a resuḿe

A first application: the Deuteron

Magnetic moment (in nuclear magnetons)andquadrupole

moment (infm2) ; PD is theD-state percentage. (LPS PRL

83 (1999) 5250)

µd =
mp

(
√

2md)
lim

Q→0

1

Q
[J 1

1,0 − J 1
0,1]

Qd =

√
2

md

lim
Q→0

1

Q2
[J+

0,0 − J+
1,1]

whereJ 1(+)
fi = 〈md, Sz = f |J 1(+)|md, Sz = i〉

Interaction PD µNR
D µLFD

D QNR
D QLFD

D

CD-Bonn 4.83 0.8523 0.8670 0.2696 0.2729

Nijm1 5.66 0.8475 0.8622 0.2719 0.2758

RSC93 5.70 0.8473 0.8637 0.2703 0.2750

Av18 5.76 0.8470 0.8635 0.2696 0.2744

Exp. 0.857406(1) 0.2859(3)

Does the role of MEC shrink? Could the pair diagram (a well

known relativistic effect) remove the remaining differences? In

LF, instantaneous term is the relevant one forµD
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Deuteron EM ff’s(LPS, PRCC 62 (2000) 0640004)
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RSC N − N interaction+ Gari-Krümpelmann Nucleon ff’s (ZPA322
(1985) 689)

Solid line: full result with the Poincaré covariant current operator, in the

Breit frame whereq⊥ = 0

Long-dashed line: non relativistic result in the same Breitframe.

Dashed line: the argument of the Nucleon ff’s,(p′1 − p1)2 → −Q2.
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T20(Q2) = −τ

√
2

3

[ 4
3
τG2

Q + 4GQGC + fG2
M ]

A + B tan2(θ/2)
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(c)

RSC N − N interaction+ Gari-Krümpelmann nucleon f. f.

Solid line: full result with the Poincaré covariant current operator in the

Breit frame where q⊥ = 0 .

Long-dashed line: non relativistic result in the same Breitframe.

Dashed line: the argument of the Nucleon ff’s,(p′1 − p1)2 → −Q2.

Conclusions: Dependence upon two-nucleon interactions and upon
nucleon form factors. EM current operator has to be improved!
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Trinucleon EM form factors

Ingredients

⋆ A Breit frame where

q⊥ = 0 ⇒ q
+ 6= 0

⋆⋆ A Poincaŕe covariant current

jµ(qêz) =
J µ(qêz)

2
+ Lµ

ν [rx(−π)] eıπSx
J ν(qêz)

∗

2
e−ıπSx

with

J+(qêz) = J−(qêz) = ΠJ+
free(0)Π

J 1(2)(qêz) = ΠJ
1(2)
free(0)Π

Π ≡ projector onto the subspace of a trinucleon bound state|χ 1

2

〉

of massMT and spin1/2,

Jµ
free(0) =

P
i
Jµ

pi(0)(1 + τ3)/2 + Jµ
ni(0)(1 + τ3)/2 with

Jµ
N = −F2N (pµ + p′µ)/2M + γµ(F1N + F2N ).

F Tz

ch
(Q2) =

1

2
Tr[I+(Tz)] F Tz

mag(Q2) = −i
M

Q
Tr[σ̂y Ix(Tz)]

with Ir
σ′σ

(Tz) ≡ 〈Ψ
1

2
Tz

1

2
σ′

, P ′| J r |Ψ
1

2
Tz

1

2
σ

, P 〉
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⋆⋆⋆ A trinucleon bound state, obtained through a variational

technique by Kievsky, Rosati, Viviani (NPA 577 (1994) 511) with

two-body forces,AV18, and three-body ones,UIX. 3He and3H

are distinct, since the Coulomb forces are taken into account.

• S+S’, P and D waves included

• Melosh Rotations fully considered

• 6D Montecarlo integrations
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Table 1: Magnetic moments and charge radii of
3He and 3H. The two-body force,Av18, is included.

PS+S′(Av18) ∼ 91.4%, PP (Av18) ∼ 0.07%,

PD(Av18) ∼ 8.5%

Theory µ(3He) µ(3H) rch(3He)fm rch(3H)fm

NR(S+S’) -1.700(1) 2.515(3) 1.926(3) 1.726(3)

LF(S+S’) -1.758(1) 2.600(3) 1.949(3) 1.771(3)

NR(S+S’+P+D) -1.762(1) 2.579(2) 1.916(4) 1.718(4)

LF(S+S’+P+D) -1.834(2) 2.674(2) 1.941(4) 1.759(4)

Exp. -2.1276 2.9789 1.959(30) 1.755(86)

Table 2: Magnetic moments and charge radii of3He and
3H Two- and three-body forces,Av18 + UIX, are in-

cluded. PS+S′(Av18 + UIX) ∼ 90.5% PP (Av18 +

UIX) ∼ 0.01% PD(Av18 + UIX) ∼ 9.3%.

Theory µ(3He) µ(3H) rch(3He)fm rch(3H)fm

NR(S+S’) -1.697(1) 2.494(2) 1.848(3) 1.695(3)

LF (S+S’) -1.759(2) 2.588(2) 1.870(3) 1.712(3)

NR(S+S’+P+D) -1.760(1) 2.569(2) 1.841(4) 1.666(4)

LF (S+S’+P+D) -1.837(2) 2.669(2) 1.867(4) 1.690(4)

Exp. -2.1276 2.9789 1.959(30) 1.755(86)
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Nucleon Electromagnetic Form Factors

In the calculation we used the Gari-Krümpelman Nucleon ff’s and

the ones recently obtained within a Light-front approach byde

Melo, Frederico, Pace Pisano and G.S (arXiv:0804.1511, fortheπ

see PRD 73 (2006))
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Charge and Magnetic form factors of3H and3He in a frame

where q⊥ = 0 , and AV18 Two-body forces + Coulomb

For the first time in LFD!, but without two-body dynamical currents
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In Green color, NR calculations
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• Standard drawbacks point to an improving of the LF current

operator

• Sizable relativistic effects on the ff’s tails. Interesting region:

Q > 7 (1/fm).

• Low dependence upon Nucleon ff’s (different from the

Deuteron).

Deuteron form factors with AV18 & Gari-Kr̈umpelmann vs. LF

Nucleon ff’s (isoscalar combination)
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Charge and Magnetic form factors of3H and3He in a frame

where q⊥ = 0 , and AV18(2BF) + UIX (3BF)

For the first time in LFD!, but without two-body dynamical currents
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Dash-dotted line: LF calculation with 2BF+3BF (AV18+UIX) &
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In Green color NR calculations

Tails increase under the effect of 3BF’s, that produce more binding

(smaller charge radii)!
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Two-Body Current in the LF approach

Main lesson: more two-body currents are necessary!

A simple model: from a 4D Yukawa model, in ladder

approximation, one obtains a 3D current on the LF, that fulfills the

Ward-Takashi Identity (also the general case in Frederico,

Marinho, Pace, Sauer, G.S.: arXiv:0805.0707 and PRD in print).

The first-order current operator is (at least three particles in flight)

k′

1

p′
1

k1

Kf − k′

1 Ki − k1

(i)

pair term instantaneous in LF time

k′

1
p′
1 k1

Kf − k′

1 Ki − k1

(g)

k′

1

p′
1

k1

Kf − k′

1 Ki − k1

(h)

instantaneous in LF time

Inspired by such a model we are evaluating the two-body current

contribution for the Deuteron. Actual calculations in progress.

One can anticipate that i) the pair term affects all the threeff’s,

while the instantaneous term (present only for fermions)

contributes to the magnetic one, ii) the pair term vanishes for

q+ → 0, as it must do, while the instantaneous one survives, iii)

the remaining, on-mass shell, term affect all the Deuteron ff’s in

the whole range ofq+, i) the pair term should be maximal at

q+ ∼ mN 23



Conclusions & Perspectives

In order to construct aStandard Model for Few-Nucleon Systems it

is necessary to take into account relativistic effects

• We have extended our analysis of the elastic EM observables

from Deuteron→ 3H and3He, within the Light-Front

Hamiltonian Dynamics (Bakamjian-Thomas construction),

taking profit of the successful phenomenology developed for

Few-Nucleon Systems, and fulfilling both extended Poincaré

covariance and Hermiticity

• Few % effects for observables atQ2 = 0, but in the correct

direction. Sizable effects forQ > 1.5 GeV/c. An interesting

dependence upon 3BF beyond the same limit.

• A Systematic analysis of a new class of two-body currents for

the Deuteron is in progress.
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