

CONTENTS

- 1. "Exact" few-body wave functions and lepton scattering
- 2. Realistic many-body wave functions: momentum distributions, spectral functions and exclusive processes
- **3.** Inclusive A(e, e')X, FSI and correlations
- 4. Correlations in high-energy scattering processes
- **5.** Summary and conclusions

M. Alvioli 3 ICTP08
• FSI in $S(\boldsymbol{r}_1, \boldsymbol{r}_2, \boldsymbol{r}_3)$, calculated within generalized eikonal approximation
$= \bar{u}(\boldsymbol{k}_1 + \boldsymbol{q}, s_f) \left[\gamma_{\mu} \left(F_1(Q^2) + F_2(Q^2) \right) - (2k_1 + q)_{\mu} F_2(Q^2) \right] u(\boldsymbol{k}_1, \lambda)$
$\langle s_f J_{\mu}(oldsymbol{k}_1,oldsymbol{q}) \lambda angle =$
forming calculations in momentum space; current operator chosen accord- ing to the $CC1$ prescription:
• Factorization approximation and non-relativistic reduction removed by per-
$\rightarrow final \ state: \ \Phi_{f}^{*}(\boldsymbol{r}_{1},\boldsymbol{r}_{2},\boldsymbol{r}_{3}) = \hat{\mathcal{A}}S(\boldsymbol{r}_{1},\boldsymbol{r}_{2},\boldsymbol{r}_{3})e^{-i\boldsymbol{p}_{1}\boldsymbol{r}_{1}}e^{-i\boldsymbol{P}_{D}\mathbf{R}_{D}\Psi_{D/pn}^{*}(\boldsymbol{r})}$
$\rightarrow initial \ state: \Psi_{3\mu} = \hat{\mathcal{A}} e^{i \mathbf{P} \cdot \mathbf{R}} \psi_3(\rho, r)$
• NN correlations taken into account by realistic, state-of-the-
1. Exclusive processes off few-body nuclei: ${}^{3}He$

M. Alvioli

-1

$\begin{split} P_1^A(\mathbf{k} , E) &= \int d\mathbf{P}_{cm} \; n_{rel}^A \left(\mathbf{k} - \mathbf{P}_{cm}/2 \right) n_{cm}^A(\mathbf{P}_{cm}) \cdot \\ &\cdot \delta \left[E - E_{thr}^{(2)} - \frac{(A-2)}{2M(A-1)} \cdot \left(\mathbf{k} - \frac{(A-1)\mathbf{P}_{cm}}{(A-2)} \right)^2 \right] \end{split}$
$P_1^A(\mathbf{k} , E) = \int d\mathbf{P}_{cm} \ n_{rel}^A \left(\mathbf{k} - \mathbf{P}_{cm}/2 \right) n_{cm}^A(\mathbf{P}_{cm}) \ \cdot$
Two-Nucleon Correlation (TNC) Model (Frankfurt & Strikman; Ciofi & Simula)
$P_1^A(\mathbf{k} , E) = \sum_{f \neq \alpha} \left \int d\mathbf{r} \ e^{i\mathbf{k}\cdot\mathbf{r}} \ G_{f0}(\vec{r}) \right ^2 \delta[E - (E_{A-1}^f - E_A)] \ (correlations)$
$P_0^A(\mathbf{k} , E) = \sum_{\alpha < \alpha_F} \tilde{n}_{\alpha}(\mathbf{k}) \delta(E - \epsilon_{\alpha}); \int \tilde{n}_{\alpha} d\mathbf{k} < 1 \ (renormalized MF)$
2. Spectral Function for Complex Nuclei: TNC Model $P_A(\mathbf{k} , E) = P_0^A(\mathbf{k} , E) + P_1^A(\mathbf{k} , E)$

Alvioli		$\longrightarrow ho^{(1)}(m{r},m{r}') = A \int \prod_{i=2}^{A} dm{r}_{j}$	The ground state energy E_0 is gi $E_o = -\frac{\hbar^2}{2m} \int d\boldsymbol{r} \left[\hat{\nabla}^2 \boldsymbol{\rho}^{(1)}(\boldsymbol{r},\boldsymbol{r}')\right]$	The nuclear many-body problem $\hat{\mathbf{H}} \Psi_n = E_n \Psi_n, \hat{\mathbf{H}}$	Many-Body Calculat
11 ICTP08	$\prod_{i=3}^{A} dr_{j} \Psi_{o}^{\dagger}(r_{1},r_{A}) \hat{O}_{12}^{(n)} \Psi_{o}(r_{1},r_{A})$	$_{i}\Psi_{o}^{\dagger}(oldsymbol{r},oldsymbol{r}_{2},oldsymbol{r}_{A})\Psi_{o}(oldsymbol{r}^{\prime},oldsymbol{r}_{2},oldsymbol{r}_{A})$) $\left[r_{=r'} + \sum_{n} \int dr_1 dr_2 \hat{v}^{(n)} \rho_{(n)}^{(2)}(r_1, r_2) \right]$	$= -\frac{\hbar^2}{2m} \sum_{i} \hat{\nabla}_i^2 + \frac{1}{2} \sum_{i < j} \hat{v}_{ij}$	tions: Cluster Expansion

	(M. Alvioli, C. Ciofi degli Atti, H.Morita, PRC72 (2005))	• the wave function and correlation functions which minimize the ground- state energy are used to calculate the <i>expectation value of any operator</i>	• cluster expansion truncated at $2nd$ order in \hat{f}_{ij} ;	is a <i>correlation</i> operator.	$\hat{\mathbf{F}} = \hat{S} \prod_{i < j} \hat{f}_{ij} = \hat{S} \prod_{i < j} \sum_{n} f^{(n)}(r_{ij}) \hat{\mathcal{O}}_{ij}^{(n)}$	where ϕ_o is the <i>mean-field</i> wave function and	$\Psi_o = \hat{\mathbf{F}} \phi_o$	• $\rho^{(1)}(\boldsymbol{r}, \boldsymbol{r'})$ and $\rho^{(2)}_{(n)}(\boldsymbol{r}_1, \boldsymbol{r}_2)$ are cluster expanded, with:	
--	---	---	--	-----------------------------------	---	---	------------------------------------	--	--

- We can build **two-body** pp, pn and nn momentum distributions (M. Alvioli, C. Ciofi degli Atti, H. Morita, PRL100 (2008))
- isospin separation feasible: $\rho^{(2)} = \rho^{pp}_{(2)} + \rho^{pn}_{(2)} + \rho^{nn}_{(2)}$
- normalization (**number of pairs**) conserved by the expansion

Two-Body Densities: isospin separation

M. Alvioli	$K_{CM} = 0$	$n(oldsymbol{K}) = \int doldsymbol{k} n$	and $n(\mathbf{k}) = \int d\mathbf{K} \eta$	we have $n(\boldsymbol{k}, \boldsymbol{K}) = \frac{1}{(2\pi)^6} \boldsymbol{j}$	$K_{CM} \equiv K = 1$	$m{k}_{rel} \equiv m{k} = -$	
	corresponds to \boldsymbol{k}	$(oldsymbol{k},oldsymbol{K})=rac{(2\pi)^3}{(2\pi)^3}$,	$u(\boldsymbol{k},\boldsymbol{K}) = \frac{1}{2}$	$\int dm{r} dm{r} dm{R} dm{R}' \epsilon$	$oldsymbol{k}_1+oldsymbol{k}_2$	$rac{1}{2}(oldsymbol{k}_1-oldsymbol{k}_2)$	wo-Body Mon
15	$c_2 = -k_1, i.e. bac$	$\int d\boldsymbol{r} d\boldsymbol{R} d\boldsymbol{R}' e^{-i} \boldsymbol{K}$	$\int d\mathbf{r} d\mathbf{r}' d\mathbf{R} e^{-i} \mathbf{k}$	$e^{-i} K \cdot (R - R') e^{-i}$	$oldsymbol{R}=rac{1}{2}(oldsymbol{r}_1+oldsymbol{r}_2)$	$oldsymbol{r}=oldsymbol{r}_1-oldsymbol{r}_2$	nentum Distrib
ICTP08	k-to-back nucleons	$\mathcal{L}\cdot(oldsymbol{R}-oldsymbol{R}') ho^{(2)}(oldsymbol{r},oldsymbol{r};oldsymbol{R},oldsymbol{R}')$	$\cdot (oldsymbol{r}-oldsymbol{r}')_{oldsymbol{ ho}}(2)(oldsymbol{r},oldsymbol{r}';oldsymbol{R},oldsymbol{R})$	$m{k} \cdot (m{r} - m{r}')_{m{ ho}}^{(2)}(m{r},m{r}';m{R},m{R}')$	$m{R'} = rac{1}{2}(m{r'_1} + m{r'_2})$	$oldsymbol{r}'=oldsymbol{r}_1'-oldsymbol{r}_2'$	utions

X)ICTP08	M. Alvioli (extracted from ${}^{12}C(e, e'pp)X / {}^{12}C(e, e'p)$
$P_{pn}\simeq 97\%) \ g~(2007)~072501$	(extracted from published figures, $AV18$: $P_{pp} \simeq 3\%$, $P_{pp} \simeq 10 - 13\%$ consistent with Shneor et al., $PRL99$
2007) 132501	$P_{pN}^{A=4}$ in agreement with <i>Schiavilla et al.</i> , <i>PRL98</i> (2)
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	A 4 12 16 40
degli Atti, Morita	• correlation region: $(a, b) = [1.5, 3.0] fm^{-1}$
(Alvioli, Ciofi	P_{pn} (%) 81.3 69.4 70.5 69.0
、 、 、 、	P_{pp} (%) 19.7 30.6 29.5 31.0
	$A \qquad 4 \qquad 12 \qquad 16 \qquad 40$
	• integration over the whole k_{rel} range: $(a, b) = [0, \infty]$
	$\int_{a}^{b} dk_{rel} k_{rel}^{2} \left(n_{pp}(\boldsymbol{k}_{rel}, 0) + n_{pn}(\boldsymbol{k}_{rel}, 0) \right)$
$0 < P_{mN} < 1$	$P_{mN} = \frac{\int_{a}^{b} dk_{rel} k_{rel}^{2} n_{pN}(\boldsymbol{k}_{rel}, 0)}{1 - \frac{1}{2} \sum_{k=1}^{b} \frac{1}{2} \frac{1}{2} \sum_{k=1}^{b} \frac{1}{2}$
abilities	Back-to-Back nucleons: <i>pn</i> and <i>pp</i> proba

21	$\int dm{r}_2 ho_2(m{r}_1,m{r}_2) = ho_1(m{r}_1) \longrightarrow \int dm{r}_2 m{\Delta}(m{r}_1,m{r}_2) = 0$	our two-body $\Delta(\mathbf{r_i}, \mathbf{r_j}) = \rho_2(\mathbf{r}_i, \mathbf{r}_j) - \rho_1(\mathbf{r}_i) \rho_1(\mathbf{r}_j)$ provides:	$\simeq \prod_{j=1}^{c} \rho(\mathbf{r}_j) \leftarrow usual approximation : is it reliable?$	$(i < j) \neq (k < l) \qquad $	$j=1 \qquad i < j=1 \qquad k \neq (il) \qquad \qquad$	• exact expansion of the many-body WF (Glauber, Foldy & Walecka): $\Psi(\mathbf{r}_1,, \mathbf{r}_A) ^2 = \prod \rho(\mathbf{r}_j) + \sum \Delta(\mathbf{r_i}, \mathbf{r_j}) \prod \rho_1(\mathbf{r}_k) + \rho_1(\mathbf{r}_$	\bullet high-energy scattering processes \longrightarrow Glauber multiple scattering	• SRC: are they relevant only in dedicated experiments?	4. Effects of NN Correlations in High-Energy Processes
----	--	--	--	---	--	---	--	---	--

 $\mathbf{e}^{\mathbf{i} \, \chi_{\text{opt}}(\boldsymbol{b}_{\mathbf{n}})} = \int \prod_{j=1} d\boldsymbol{r}_{j} \prod_{j=1} \left[1 - \Gamma(\boldsymbol{b}_{n} - \boldsymbol{s}_{j})\right] \left|\Psi_{0}(\boldsymbol{r}_{1}, ..., \boldsymbol{r}_{A})\right|^{2} \delta\left(\frac{1}{A} \sum \mathbf{r}_{j}\right)$ Example: total neutron-Nucleus $\sigma_G^{(1)} + \sigma_G^{(2)} =$ one has: using the $|\Psi_o|^2$ expansion, with: = 2 $\sigma_{\text{tot}} = \frac{4\pi}{k} Im \left[F_{00}(0) \right]$ $/ d\boldsymbol{b} \Big\{ 1 - e^{-A \int d\boldsymbol{r}_1 \rho_1(\boldsymbol{r}_1) \Gamma(\boldsymbol{b} - \boldsymbol{b}_1)} e^{\frac{A^2}{2} \int d\boldsymbol{r}_1 d\boldsymbol{r}_2 \Delta(\boldsymbol{r}_1, \boldsymbol{r}_2) \Gamma(\boldsymbol{b} - \boldsymbol{b}_1) \Gamma(\boldsymbol{b} - \boldsymbol{b}_2)} \Big\}$ $\Delta({m r_i},{m r_j}) =
ho_2({m r_i},{m r_j}) -
ho_1({m r_i})\,
ho_1({m r_j});$ $\sigma_{\text{tot}} = \sigma_{\mathbf{G}}^{(1)} + \sigma_{\mathbf{G}}^{(2)} + \Delta \sigma_{\text{in}}$ $F_{00}(\boldsymbol{q}) = \frac{ik}{2\pi} \int d^2 b_n e^{i\mathbf{q}\cdot\mathbf{b_n}} \left| 1 - \mathbf{e}^{\mathbf{i}\,\chi_{\text{opt}}(\mathbf{b_n})} \right|$ cross section at high energies

no correlation case \longrightarrow $\Delta = 0 \longrightarrow \sigma_G^{(2)} = 0$

Glauber +

Inelastic shadowing

M. Alvioli

M. Alvioli • Many-body calculations can be reliably performed within a convergent clus-• Cross sections and momentum distributions in inclusive reactions suggest Tensor and Isospin-Tensor correlations appear to be the essential ingredi-Exclusive processes off few-body nuclei can be reliably described within High-energy processes are also affected by NN correlations and their conter expansion method: any one and two-body quantity can be calculated generalized Glauber FSI and realistic wave functions pression with two-body correlations tions in complex nuclei; at high momentum values TNC model OK ents for a correct description of (one- and two-body) momentum distributhat both ground state high momentum components and FSI in complex tribution can be quantitatively be evaluated within the "exact" $|\Psi_o|^2$ exnuclei can be described with properly *scaled* ${}^{2}H$ corresponding quantities Conclusions

H
\square
Η
Ð
Ŏ
0

M. Alvioli

Additional Slides

with: $\hat{\mathbf{H}} = -\frac{\hbar^2}{2m} \sum_{i} \hat{\nabla}_i^2 + \frac{1}{2} \sum_{i < j} \hat{v}_i$ $\hat{v}_{ij} = \sum_{n} v^{(n)}(r_{ij}) \hat{\mathcal{O}}_{ij}^{(n)}$ $\boldsymbol{\sigma}_j, \hat{S}_{ij}, (\boldsymbol{L} \cdot \boldsymbol{S})_{ij},] \otimes [1, \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j]$. endence is cast onto Ψ_o : $\Psi_o = \hat{\mathbf{F}} \phi_o$ ld wave function and $\prod_{i < j} \hat{f}_{ij} = \hat{S} \prod_{i < j} \sum_{n} f^{(n)}(r_{ij}) \hat{\mathcal{O}}_{ij}^{(n)}$ $\sum_{i < j} p_i$	$\begin{split} \mathbf{H} \Psi_n &= E_n \Psi_n, with \\ here \\ \hat{\mathcal{O}}_{ij}^{(n)} &= \begin{bmatrix} 1, \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j , \hat{S} \\ \hat{\mathcal{O}}_{ij} &= \begin{bmatrix} 1, \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j , \hat{S} \\ \mathbf{f} &= \mathbf{f} , \mathbf{f} , $
---	---

ICTP08

density matrix expression is as follows: • at first order of the η -expansion, the full correlated one-body mixed

$$ho^{(1)}(m{r}_1,m{r}_1')\,=\,
ho^{(1)}_o(m{r}_1,m{r}_1')\,+\,
ho^{(1)}_H(m{r}_1,m{r}_1')\,+\,
ho^{(1)}_S(m{r}_1,m{r}_1)\,,$$

with

$$\begin{split} \rho_{H}^{(1)}(\boldsymbol{r}_{1},\boldsymbol{r}_{1}') &= \int d\boldsymbol{r}_{2} \left[H_{D}(r_{12},r_{1'2}) \, \rho_{o}^{(1)}(\boldsymbol{r}_{1},\boldsymbol{r}_{1}') \, \rho_{o}(\boldsymbol{r}_{2}) - H_{E}(r_{12},r_{1'2}) \, \rho_{o}^{(1)}(\boldsymbol{r}_{1},\boldsymbol{r}_{2}) \, \rho_{o}^{(1)}(\boldsymbol{r}_{1},\boldsymbol{r}_{2}) \, \rho_{o}^{(1)}(\boldsymbol{r}_{2},\boldsymbol{r}_{1}') \, \rho_{o}(\boldsymbol{r}_{2}) - H_{E}(r_{12},r_{1'2}) \, \rho_{o}^{(1)}(\boldsymbol{r}_{1},\boldsymbol{r}_{2}) \, \rho_{o}^{(1)}(\boldsymbol{r}_{2},\boldsymbol{r}_{1}') \rho_{o}(\boldsymbol{r}_{3}) - H_{E}(r_{23}) \rho_{o}^{(1)}(\boldsymbol{r}_{2},\boldsymbol{r}_{3}) \rho_{o}^{(1)}(\boldsymbol{r}_{3},\boldsymbol{r}_{1}') \right] \\ \text{and the functions } H_{D} \text{ and } H_{E} \text{ are defined as:} \end{split}$$

$$H_{D(E)}(r_{ij}, r_{kl}) = \sum_{p,q=1}^{6} f^{(p)}(r_{ij}) f^{(q)}(r_{kl}) C_{D(E)}^{(p,q)}(r_{ij}, r_{kl}) - C_{D(E)}^{(1,1)}(r_{ij}, r_{kl})$$

with $C_{D(E)}^{(p,q)}(r_{ij}, r_{kl})$ proper functions arising from spin-isospin traces;

(Alvioli, Ciofi degli Atti, Morita, PRC72 (2005))

ICTP08

M. Alvioli

• at first order of the
$$\eta$$
-expansion, the full correlated two-body mixed
density matrix expression is as follows:

$$\rho^{(2)}(r_{1}, r_{2}; r'_{1}, r'_{2}) = \rho_{SM}^{(2)}(r_{1}, r_{2}; r'_{1}, r'_{2}) + \rho_{30}^{(2)}(r_{1}, r_{2}; r'_{1}, r'_{2}) + \rho_{30}^{(2)}(r_{1}, r_{2}; r'_{1}, r'_{2}) + \rho_{40}^{(2)}(r_{1}, r_{2}; r'_{1}, r'_{2}) = \rho_{SM}^{(2)}(r_{1}, r_{2}; r'_{1}, r'_{2}) = C_{D} \rho_{0}(r_{1}, r'_{1}) \rho_{0}(r_{2}, r'_{2}) - C_{E} \rho_{0}(r_{1}, r'_{2}) \rho_{0}(r_{2}, r'_{1}) \\ \rho_{30}^{(2)}(r_{1}, r_{2}; r'_{1}, r'_{2}) = \int dr_{3} \eta(r_{13}, r_{10}) \rho_{0}(r_{2}, r'_{2}) - \frac{1}{2} \eta(r_{12}, r_{12}) \rho_{0}(r_{3}, r'_{1}) \\ \rho_{30}^{(2)}(r_{1}, r_{2}; r'_{1}, r'_{2}) = \int dr_{3} \eta(r_{13}, r_{10}) [\rho_{0}(r_{1}, r'_{1}) \rho_{0}(r_{2}, r_{2}) - \frac{1}{2} \eta(r_{13}, r_{12}) \rho_{0}(r_{3}, r'_{1}) \\ \rho_{30}^{(2)}(r_{1}, r_{2}; r'_{1}, r'_{2}) = \int dr_{3} \eta(r_{13}, r_{10}) [\rho_{0}(r_{1}, r'_{1}) \rho_{0}(r_{2}, r_{3}) \rho_{0}(r_{3}, r'_{2}) + \rho_{0}(r_{1}, r'_{2}) \rho_{0}(r_{3}, r'_{1}) + \rho_{0}(r_{1}, r_{3}) \rho_{0}(r_{2}, r'_{1}) \rho_{0}(r_{3}, r'_{2}) + \rho_{0}(r_{1}, r'_{2}) \rho_{0}(r_{3}, r'_{1}) + \rho_{0}(r_{1}, r'_{2}) \rho_{0}(r_{3}, r'_{1}) + \rho_{0}(r_{1}, r'_{2}) \rho_{0}(r_{3}, r'_{1}) \\ \rho_{40}^{(2)}(r_{1}, r_{2}; r'_{1}, r'_{2}) = \frac{1}{4} \int dr_{3} dr_{4} \eta(r_{3}) + \rho_{0}(r_{1}, r_{2}) \rho_{0}(r_{3}, r'_{1}) \rho_{0}(r_{3}, r'_{3}) \\ \cdot \sum_{r \in \mathcal{C}} (-1)^{P} [\rho_{0}(r_{1}, r_{P1}) \rho_{0}(r_{2}, r_{1}) \rho_{0}(r_{3}, r_{2}) \rho_{0}(r_{4}, r_{2})] \\ (Atvioli, Ciofi degli Atti, Morita, PRC72 (2005)) \\ (Atvioli, Ciofi degli Atti, Morita, PRC72 (2005)) \\ (Atvioli), Ciofi degli Atti, Morita, PRL100 (2008))$$

M. Alvioli

correlation functions: Central, Spin-Isospin, Tensor

 $\eta - exp$ FHNC $< V_c >$ 0.6940.19-40.13 -35.88 -9.47 -10.61 -171.32 -180.00 $< V_{\sigma\tau} >$ -0.003 $< V_S >$ -0.07 -172.89 $< V_{S\tau} >$ -160.32 -389.40 323.50 -390.30 325.18 < V >∧ 〒 ∨ -65.90 -65.12J E/A MeV-4.12 -4.07

Ground state energy: ${}^{16}O$ - Argonne V8'

ICTP08

မ္မ

M. Alvioli - ICTP08

Inclusive Transparency in
$$A(e, e'p)X$$

using again the Foldy-Walecka expansion of $|\Psi_o|^2$ one obtains:
 $T = \int \prod_{j=1}^{A} dr_j G(b_1, b_j) |\Psi_o(r_1, ..., r_A)|^2 =$
 $= \int dr_1 \rho(r_1) e^{-A \int dr_1 \rho_1(r_1) \Gamma(b-b_1)} e^{\frac{A^2}{2} \int dr_1 dr_2 \Delta(r_1, r_2) \Gamma(b-b_1) \Gamma(b-b_2)} +$
 $-A \int dr_1 r_2 \Delta(r_1, r_2) e^{-A \int dr_1 \rho_1(r_1) \Gamma(b-b_1)} e^{\frac{A^2}{2} \int dr_1 dr_2 \Delta(r_1, r_2) \Gamma(b-b_1) \Gamma(b-b_2)} +$
 $-A \int dr_1 r_2 \Delta(r_1, r_2) e^{-A \int dr_1 \rho_1(r_1) \Gamma(b-b_1)} e^{\frac{A^2}{2} \int dr_1 dr_2 \Delta(r_1, r_2) \Gamma(b-b_1) \Gamma(b-b_2)} +$
 $-A \int dr_1 r_2 \Delta(r_1, r_2) e^{-A \int dr_1 \rho_1(r_1) \Gamma(b-b_1)} e^{\frac{A^2}{2} \int dr_1 dr_2 \Delta(r_1, r_2) \Gamma(b-b_1) \Gamma(b-b_2)} +$
 $-A \int dr_1 r_2 \Delta(r_1, r_2) e^{-A \int dr_1 \rho_1(r_1) \Gamma(b-b_1)} e^{\frac{A^2}{2} \int dr_1 dr_2 \Delta(r_1, r_2) \Gamma(b-b_1) \Gamma(b-b_2)} +$
 $-A \int dr_1 r_2 \Delta(r_1, r_2) e^{-A \int dr_1 \rho_1(r_1) \Gamma(b-b_1)} e^{\frac{A^2}{2} \int dr_1 dr_2 \Delta(r_1, r_2) \Gamma(b-b_1) \Gamma(b-b_2)} +$
 $-A \int dr_1 r_2 \Delta(r_1, r_2) e^{-A \int dr_1 \rho_1(r_1) \Gamma(b-b_1)} e^{\frac{A^2}{2} \int dr_1 dr_2 \Delta(r_1, r_2) \Gamma(b-b_1) \Gamma(b-b_2)} +$
 $-A \int dr_1 e^{-A \int dr_1 \rho_1(r_1) \Gamma(b-b_1)} e^{\frac{A^2}{2} \int dr_1 dr_2 \Delta(r_1, r_2) \Gamma(b-b_1) \Gamma(b-b_2)} +$
 $-A \int dr_1 e^{-A \int dr_1 \rho_1(r_1) \Gamma(b-b_1)} e^{\frac{A^2}{2} \int dr_1 dr_2 \Delta(r_1, r_2) \Gamma(b-b_1) \Gamma(b-b_2)} +$
 $-A \int dr_1 e^{-A \int dr_1 \rho_1(r_1) \Gamma(b-b_1)} e^{\frac{A^2}{2} \int dr_1 dr_2 \Delta(r_1, r_2) \Gamma(b-b_1) \Gamma(b-b_2)} +$
 $-A \int dr_1 e^{-A \int dr_1 \rho_1(r_1) \Gamma(b-b_1)} e^{\frac{A^2}{2} \int dr_1 dr_2 \Delta(r_1, r_2) \Gamma(b-b_1) \Gamma(b-b_2)} +$
 $-A \int dr_1 e^{-A \int dr_1 \rho_1(r_1) \Gamma(b-b_1)} e^{-A \int dr_1 dr_2 \Delta(r_1, r_2)} e^{-A \int dr_1 dr_2 \Delta(r_1, r_2)} = 0$
 $-A \int dr_1 e^{-A \int dr_1 \rho_1(r_1) \Gamma(b-b_1)} e^{-A \int dr_1 dr_2 \Delta(r_1, r_2)} e^{-A \int dr_2 dr_2 \Delta(r_1, r_2)} e^{-A \int dr_1 dr_2 \Delta(r_1, r_2)} e^{-A \int dr_2 dr_2 \Delta(r$

- normalization (**number of pairs**) conserved by the expansion
- isospin separation feasible
- closed j-shell nuclei included in the formalism
- three and four-body diagrams essential