Electromagnetic Transition Form Factors

Aznauryan, V. D. Burkert, V. Mokeev

Jefferson Lab

(CLAS Collaboration)

Motivation
 Baryon resonance transitions in Nπ, Nη

 NΔ(1232) multipoles
 Roper P₁₁(1440), S₁₁(1535)
 Helicity structure of D₁₃(1520)

 Transition amplitudes in pπ⁺π⁻ channel

 P₁₁(1440), D₁₃(1520), D₃₃(1700), P₁₃(1720)

 Summary & Outlook

Hadron Structure with e.m. Probes?

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

2

SU(6)xO(3) Classification of lowest lying Baryons

JLab Site: The 6 GeV CW Electron Accelerator

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

N- Δ (1232) Quadrupole Transition

Multipole Ratios R_{EM} , R_{SM} before 1999

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

N Δ electroproduction experiments after 1999

Reaction	Observable	W	Q ²	Author, Conference, Publication	LAB
$p(e,e'p)\pi^0$	$\sigma_0 \ \sigma_{TT} \ \sigma_{LT} \ \sigma_{LTP}$	1.221	0.060	S. Stave, EPJA, 30, 471 (2006)	MAMI
$p(e,e'p)\pi^0$	$R_{LT'}^t R_{LT}^n R_{LT}^l$	1.232	0.121	H. Schmieden, EPJA, 28, 91 (2006)	MAMI
$p(e,e'p)\pi^0$	$R_{LT'}^{\prime} R_{LT}^{\prime} R_{LT}^{\prime}$	1.232	0.121	Th. Pospischil, PRL 86, 2959 (2001)	MAMI
p(e,e'p)π ⁰	$\sigma_0 \sigma_{TT} \sigma_{LT} \sigma_{LTP}$	1.232	0.127	C. Mertz, PRL 86, 2963 (2001) C. Kunz, PLB 564, 21 (2003) N. Sparveris, PRL 94, 22003 (2005)	BATES
$p(e,e^{\prime}p)\pi^{0}$	$\sigma_0 \ \sigma_{TT} \ \sigma_{LT} \ \sigma_{LTP}$	1.232 1.221	0.127 0.200	N. Sparveris, SOH Workshop (2006) N. Sparveris, nucl-ex/611033	MAMI
p(e,e'p)π ⁰	A _{LT} A _{LTP}	1.232	0.200	P. Bartsch, PRL 88, 142001 (2002) D. Elsner, EPJA, 27, 91 (2006)	MAMI
$p(e,e'p)\pi^0$ $p(e,e'\pi+)n$	$\sigma_0 \sigma_{TT} \sigma_{LT} \sigma_{LTP}$	1.10-1.40	0.16-0.35	C. Smith, SOH Workshop (2006)	JLAB / CLAS
$p(e,e'p)\pi^0$	$\sigma_0 \sigma_{TT} \sigma_{LT}$	1.11-1.70	0.4-1.8	K. Joo, PRL 88, 122001 (2001)	JLAB / CLAS
$p(e,e'p)\pi^0$ $p(e,e'\pi+)n$	σ_{LTP}	1.11-1.70	0.40,0.65	K. Joo, PRC 68, 32201 (2003) K. Joo, PRC 70, 42201 (2004) K. Joo, PRC 72, 58202 (2005)	JLAB / CLAS
p(e,e'\pi+)n	$\sigma_0 \sigma_{TT} \sigma_{LT}$	1.11-1.60	0.3-0.6	H. Egiyan, PRC 73, 25204 (2006)	JLAB / CLAS
$p(e,e'p)\pi^0$	16 response functions	1.17-1.35	1.0	J. Kelly, PRL 95, 102001 (2005)	JLAB / Hall A
$p(e,e'p)\pi^0$	$\sigma_0 \sigma_{TT} \sigma_{LT}$	1.10-1.40	3.0-6.0	M. Ungaro, PRL 97, 112003 (2006)	JLAB / CLAS
p(e,e'p)π ⁰	$\sigma_0 \sigma_{TT} \sigma_{LT}$	1.10-1.35	2.8, 4.0	V. Frolov, PRL 82 , 45 (1999)	JLAB / Hall C

$N\Delta$ Multipole Ratios R_{EM} , R_{SM} in 2007

 There is no sign for asymptotic pQCD behavior in R_{EM} or R_{SM}.

• $R_{EM} < 0$ at low Q² favors oblate shape of $\Delta(1232)$ and prolate shape of the proton.

 Dynamical models attribute the deformation to contributions of the pion cloud at low Q².

 Data at Q²=7 GeV² still to come from Jlab Hall C.

Comparison with Theory

2nd and 3rd nucleon resonance regions

(DDC 2004)

State	$\eta_{{ m N}\pi}$	$\eta_{N\eta}$	$\eta_{N\pi\pi}$				
P ₁₁ (1440)	0.55-0.75		0.3-0.4				
D ₁₃ (1520)	0.55-0.65	0.0023	0.4-0.5				
S ₁₁ (1535)	0.35-0.55	0.45-0.60	< 0.1				
D ₃₃ (1700)	0.1-0.2		0.8-0.9				
P ₁₃ (1720)	0.1-0.2	0.04	> 0.7				

Analysis tools:

- Unitary isobar model (UIM), starting from MAID.
- Dispersion relations (DR), for 1-pion analysis.
- Isobar model (JM06) for 2-pion analysis with leading contributions as observed in the data. Fit to 9 independent one-dimensional projections of 5-dim. cross sections.

UIM & DR Fit at low & high Q^2

data points > 50,000 , $E_e = 1.515$, 1.645, 5.75 GeV

Observable	Q^2	Number of Data points
dσ/dΩ(π ⁰)	0.40	3 530
	0.65	3 818
	0.40	2 308
$d\sigma/d\Omega(\pi^+)$	0.65	1 716
,	1.7-4.3	33 000
Α .(π ⁰)	0.40	956
	0.65	805
	0.40	918
Α _e (π+)	0.65	812
0	1.7 - 4.3	3 300
$d\sigma/d\Omega(n)$	0.375	172
	0.750	412

Low Q² results: I. Aznauryan et al., PRC71, 015201, 2005; PRC 72, 045201, 2005;

High Q² results on Roper: I. Aznauryan et al., arXiv:0804.0447 [nuclex].

Fits to diff. cross sections & structure functions

Legendre moments for $\sigma_T + \epsilon \sigma_L$

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

> At Q^2 =1.7-4.2, resonance behavior is seen in these amplitudes more clearly than at Q^2 =0

> DR and UIM give close results for real parts of multipole amplitudes

Roper transition amplitudes from $N\pi$ data

5. Aznauryan, PRC76(2007)025212 **6**. Cano PL B431(1998)270

JM06 Fit to $p(\gamma_v, p\pi^-\pi^+)$

Simultaneous fit to 9 one-dimensional integrated cross sections.

Volker D. Burkert,

6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

Integrated cross sections for $p(\gamma_v, p\pi^+\pi^-)$

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

19

$P_{11}(1440)$ amplitudes from $p\pi^+\pi^-$ data.

$P_{11}(1440)$ amplitudes from $N\pi$ and $N\pi\pi$

Transition amplitudes for $\gamma_v p D_{13}(1520)$

ransition amplitudes for $\gamma_v p D_{13}(1520)$

 $A_{1/2}$ dominance with increasing Q^2 .

 $=\frac{A_{1/2}^2 - A_{3/2}^2}{A_{1/2}^2 + A_{3/2}^2}$

- This state has traditionally been studied in the $S_{11}(1535) \rightarrow p\eta$ channel, which a prominent decay. $S_{11}(1535) \rightarrow p\eta$; pη selects isospin I=1/2 $S_{11}(1535) \rightarrow N\pi$; Nπ sensitive to I=1/2, 3/2
- For the study of $S_{1/2} N\pi$ channel is important. $S_{1/2}$ difficult to extract in pŋ channel.

Transition amplitudes for $S_{11}(1535)$

- $A_{1/2}$ from $n\pi^+$ consistent with pŋ within uncertainties of b.r.
- In $n\pi^+$ the S₀₊ amplitude interferes with the strong M₁₋ allowing access to the longitudinal coupling. **D**₀^{LT} ~ **Re(E**₀₊**S**^{*}₁₋ + **S**₀₊**M**₁₋^{*}).
- Sign not consistent with CQM, but agrees with dynamically generated resonance prediction. This may indicate that CQM's must take into account meson cloud to reproduce sign of $S_{1/2}$, see: B. Julia-Diaz, et.al. (EBAC), Phys. Rev. C77:045205(2008).

Transition amplitudes for $D_{33}(1700)$, $P_{13}(1720)$

Volker D. Burkert, 6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

Conclusions & Outlook

- $N\Delta(1232)$ amplitudes are well determined at Q^2 up to 6 GeV².
 - No sign of transition to asymptotic QCD behavior
- Roper P₁₁(1440) amplitudes determined up to 4.5 GeV² using two different analysis approaches (DR, UIM), and two channels
 - Sign change of $A_{1/2}$ seen in $N\pi$ and $N\pi\pi$
 - High Q^2 behavior consistent with radial excitation of the nucleon as in CQM
- $S_{11}(1535)$ amplitudes measured in $n\pi^+$ channel, for the first time
 - Hard A $_{1/2}$ form factor confirmed
 - First measurement of $S_{1/2}$. Sign inconsistent with CQM, consistent with dynamically generated state
- $D_{13}(1520)$ in $n\pi^+$ and $p\pi^+\pi^-$
 - Helicity switch from $A_{3/2}$ dominance to $A_{1/2}$ dominance at Q²>0.6 GeV²
- $P_{13}(1720)$ and $D_{33}(1700)$ in $p\pi^{+}\pi^{-}$
 - the first consistent mapping of their Q² dependence

Future prospects of N* Physics at the Jlab

- Hall C data on NA at high Q^2 expected soon
- New data on Q² dependence of high mass states (CLAS)
- ${\ \hbox{ s}}$ An experiment is planned in Hall A to study ND at very low Q^2
- An extensive program is underway with polarized photon beams and polarized targets to search for new baryon states (CLAS)
- Large effort underway at EBAC to develop the coupled channel analysis of these and other data
- Proposal for a transition form factor program at high Q² for the JLab 12 GeV upgrade with CLAS12

CLAS12 - Detector

Projections for N* Transition Amplitudes @ 12 GeV

Probe the transition from effective degrees of freedom, e.g. constituent quarks, to elementary quarks, with characteristic Q^2 dependence.

Additional Slides

Volker D. Burkert,6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008

JLAB-MSU model (JM06) for 2π electroproduction.

3-body processes:

Isobar channels included:

 $\pi^-\Delta^{++}$

•All well established N* with $\pi\Delta$ decays and $3/2^+(1720)$ candidate, seen in CLAS 2π data.

•Reggetized Born terms & effective FSI&ISI treatment .

•Extra $\pi\Delta$ contact term.

ρp

•All well established N* with ρp decays and $3/2^+(1720)$ candidate.

•Diffractive ansatz for non-resonant part & ρ-line shrinkage in N* region.

JM06 Model, cont'd

6th International Conference on Perspectives in Hadron Physics, Trieste May 12-15, 2008