

Elastic gauge fields, Hall viscosity and the chiral anomaly in Weyl Semimetals

María A. H. Vozmediano

Instituto de Ciencia de Materiales de Madrid

CSIC

Key issue:

Local lattice deformations couple to the electronic degrees of freedom of **Weyl matter** as fictitious gauge fields. New unexpected anomaly-related response functions.

Tool: effective actions

Players:

- Weyl matter
- Hall conductivity
- Elastic gauge fields

Main results:

- Elastic gauge fields in Weyl semimetals.
- Hall viscosity from Hall conductivity in Dirac matter
- Coefficient related to AAA triangle graph

Hall viscosity from elastic gauge fields in Dirac crystals, A. Cortijo, K. Landsteiner, Y. Ferreiros, and MAHV, arXiv:1506.05136 (2015).

High school solids

Discrete energy levels separated by forbidden regions

Crystal: many atoms in a periodic lattice.

Dictionary

- Band theory: electrons in a periodic potential. The bands retain the symmetry properties of the original orbitals (parity, inversion, etc.)
- Brillouin zone: support of non-equivalent k values. In 2D periodic BZ a torus.
- Each discrete level E_n of the atom or molecule forms a band . $\epsilon_n(k)$
- Fermi surface: fill the bands with electrons.

$$\varepsilon_n(k) = \varepsilon_F$$
 The vacuum

• Continuum model: expand dispersion relation around a point at the Fermi surface.

Band topology

Wave function: $\Psi_n(\mathbf{r}) = \sum_{k \in B} e^{ikr} u_n(k)$

• Berry connection:

• Chern number (2D):

Bloch
$$u_n(k+T) = u_n(k)$$

$$\vec{A}_n(\mathbf{k}) = \left\langle u_n(k) \middle| \vec{\nabla}_k \middle| u_n(k) \right\rangle$$

 $C_n = \frac{1}{2\pi i} \int_{BZ} d^2 \vec{k} \cdot \vec{B}_n(\mathbf{k})$

A fiber bundle over BZ

Encodes (most) topological properties of the system.

• An observable consequence:

$$\sigma_{H} = \sum_{n \text{filled}} C_{n} \frac{e^{2}}{\hbar}$$

At least two bands needed to have non trivial topology

D. Carpentier arXiv:1408.1867

Questions

- How did Dirac arise in condensed matter? -> Dirac matter
- How did topology pop up? -> Topological matter

Graphene as a prototypical example

 Are Dirac material physical realizations of QED or are they only analogs? -> Similarities and differences between QFT and CM

Main differences due to the finite bandwidth

Tight binding approach

 $\Psi = (\Psi_A, \Psi_B)$

Fermi surface for the neutral material (half filling): E(k)=0

Fermi points and Dirac fermions

$$E(\mathbf{k}) = 0$$

Get six Fermi points at the six corners of the BZ (only two are independent)

Continuum limit at K point: $a \rightarrow 0$ and scale the hamiltonian:

$$H_{K}^{e\!f\!f} = v_{F}\vec{\sigma}.\vec{p}$$

$$v_F = \frac{3ta}{2} \approx 10^6 \, m \, / \, s \approx c \, / \, 300$$

Massless (2+1) Dirac with v_F

Obstructions to Weyl fermions in crystals

1. Weyl arise in conjugate pairs (Nielsen-Ninomiya). Put them apart in k space.

- 2. Kramers degeneracy: \mathcal{T} (or \mathcal{I}) must be broken (spin).
- 3. Fine tuning: Fermi level aligned to the nodes.

Expanding around the other Fermi point get

$$H(-K+k) = v_F(-k_x\sigma_x + k_y\sigma_y)$$

The two "flavors" are related by \mathcal{T} . They have opposite helicities and winding numbers.

Essential property: separated in k space

Summary of graphene features

• The electronic properties described by 2D massless spinors.

• Spinor structure given by the two sublattices A and B.

$$L = \int dt \ d^2x \sum_{i=K,K'} \overline{\Psi}_i(x,t) \gamma^{\mu} \partial_{\mu} \Psi_i(x,t)$$

 They come in two flavors associated to the two Fermi points of oposite helicities. (Called valleys in semiconductor language).

$$\Psi_{K} = \begin{pmatrix} \Psi_{A} \\ \Psi_{B} \end{pmatrix} \qquad \Psi_{K'} = \begin{pmatrix} \Psi_{A} \\ \Psi_{B} \end{pmatrix}$$

$$H(K) = H^*(-K)$$

Effective Hamiltonian at each valley involves the two in-equivalent representations of the Dirac matrices in 3D .

- Real spin did not play much a role until the recent advent of the topological insulators
 - The interacting system behaves as "reduced" QED : $\alpha{\sim}2$
 - RG analysis: $\alpha = 0$ IR stable fixed point similar to QED(3+1).

Topological aspects

VOLUME 53

24 DECEMBER 1984

NUMBER 26

Condensed-Matter Simulation of a Three-Dimensional Anomaly

Gordon W. Semenoff

VOLUME 61, NUMBER 18

PHYSICAL REVIEW LETTERS

31 OCTOBER 1988

Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"

F. D. M. Haldane

$$S = \int d^3x \bar{\psi} [(\gamma^{\mu} (i\partial_{\mu} + eA_{\mu}) - m)]\psi$$

$$S_{eff}[A] = \operatorname{sign}(m) \varepsilon^{\mu\nu\lambda} A_{\mu} \partial_{\nu} A_{\lambda}$$

Where does the mass come from?: spin-orbit coupling

$$H_{\text{Dirac}} = \begin{bmatrix} m & k_x - ik_y & & 0 \\ k_x + ik_y & -m & & \\ 0 & & -m & k_x - ik_y \\ 0 & & & k_x + ik_y & m \end{bmatrix}$$

Kane & Mele (2005, 2006); Bernevig & Zhang (2006)

Use the spin degree of freedom to get two copies of Dirac. Spin-Hall effect. Same with valleys: VHE. Or with layers in bilayer: LHE. Birth of topological insulators.

Topological insulators in three spatial dimensions

Axion electrodynamics:

$$\mathcal{L} = \frac{1}{4\pi} F_{\mu\nu} F^{\mu\nu} + \frac{e^2}{2\pi^2 \hbar c} \theta \varepsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} + J^{\mu} A_{\mu}$$
$$\vec{\nabla} \mathbf{E} = \rho - \frac{e^2}{4\pi^2 \hbar c} \mathbf{B} \vec{\nabla} \theta, \qquad \qquad \vec{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\vec{\nabla} \mathbf{B} = 0, \qquad \vec{\nabla} \times \mathbf{B} = \mathbf{J} + \frac{\partial \mathbf{E}}{\partial t} + \frac{e^2}{4\pi^2 \hbar c} \dot{\theta} \mathbf{B} + \frac{e^2}{4\pi^2 \hbar c} \vec{\nabla} \theta \times \mathbf{E}$$

• If $\dot{\theta} = 0 \Longrightarrow$ standard electrodynamics but with

F Wilczek. Rev. Lett. 58, 1799 (1987)

Topological matter

Kitaev, Moore, Read share Dirac Medal 2015!

Mechanical properties

GRAPHENE'S SUPERLATIVES

Thinnest imaginable material

- largest surface area (~2,700 m² per gram)
- strongest material 'over measured' (theoretical limit)

stiffest known material (stiffer than diamond)

- most stretchable crystal (up to 20% elastically)
- record thermal conductivity (outperforming diamond)
- highest current density at room T (106 times of copper)
- completely impermeable (even He atoms cannot squeeze through)
- highest intrinsic mobility (100 times more than in Si)
- conducts electricity in the limit of no electrons
- lightest charge carriers (zero rest mass)
- longest mean free path at room T (micron range)

\equiv **WIRED**.CO.UK

Modeling lattice deformations in graphene

Tight binding

$$H_{TB} = \sum_{\langle ij \rangle} t_{ij} a_i^+ b_j$$

Elasticity+low energy near a Fermi point

 $\beta = \frac{\partial \log(t)}{\partial \log(t)} \approx 2$

$$H_{TB} = i \int d^2 x \, \Psi^+ \sigma^i (\partial_i + iA_i) \Psi$$

$$A_{x} = \frac{\beta}{a} \left(u_{xx} - u_{yy} \right) , A_{y} = \frac{2\beta}{a} u_{xy}$$

Geometric formalism

Dirac equation in a curved background

$$H = i \int d^2 x \sqrt{g} \overline{\Psi} \sigma^{\mu} (\partial_{\mu} + \Gamma_{\mu}) \Psi$$

Continuum from the beginning. Does not see the underlying lattice.

$$\gamma^{\mu}(r) = \gamma^{a} e^{\mu}_{a}(r)$$

Both predict vector fields coupled to electronic excitations. Opposite signs at the two Fermi points

Symmetry approach

Build an effective H at low energy with C_{3v} symmetry

Solution What can we build with
$$(\sigma^i, q^i, u^{ij})$$
 ? $H_0 = v_F \vec{\sigma}. \vec{q}$

 C_3 invariant tensor:

 $u_{ij} = \frac{1}{2}(\partial_i \xi_j + \partial_j \xi_i + \partial_i h \partial_j h), \quad i, j = x, y,$

$$f^{ijk} = \frac{1}{a^3} \sum_{n=1}^3 a_n^i a_n^j a_n^k \qquad A_i \approx f^{ijk} u_{jk}$$

Terms compatible with C₃ symmetry:

Even # indices: contract with the flat metric

- $\sigma_i \partial_j$, the flat Hamiltonian
- $\sigma_i(\partial_j u_{kl})$ the geometric gauge field
- $u_{kl}\sigma_i\partial_j$ the space dependent Fermi velocity

Odd # indices: contract with f or ϵ_{ijk}

- $\sigma_i u_{jk}$ the trigonal gauge field
- $\sigma_i \partial_k \partial_j$ the trigonal warping term

F. de Juan. M. Sturla, MAHV PRL'12F. de Juan, J. Mañes, MAHV PRB'13J. Mañes, F. de Juan, M. Sturla, MAHV PRB13

Physical reality of the elastic gauge fields

Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles

N. Levy,^{1,2*}† S. A. Burke,^{1*}‡ K. L. Meaker,¹ M. Panlasigui,¹ A. Zettl,^{1,2} F. Guinea,³ A. H. Castro Neto,⁴ M. F. Crommie^{1,2}§

CVD graphene

N. C. Yeh(Caltec), Surface Science 10

Reorganization of the density of states similar to Landau levels.

Viscosity

Fluids: (characterized by velocity field u)

- Shear and bulk. Friction.
- It is zero at zero temperature

 $T_{ij} \sim \eta_{ijkl} u_{kl}$ $u_{kl} = \frac{1}{2} (\partial_k u_l + \partial_l u_k)$

Response of the stress tensor to velocity gradient.

Elasticity: (characterized by strain tensor u_{ij})

- Response of the stress tensor to time varying strain (strain rate):

$$T_{ij} \sim \eta_{ijkl} \dot{u}_{kl}$$

(Dimensions of density in units h=1)

Anomalies and non-dissipative responses

Thermal Hall effect $J^{0} \neq 0$ $T(\vec{m})$ $T(\vec{m})$

Hall viscosity

- T broken
- Dissipationless currents
- Chern-Simons effective actions
- Needs coupling e's to elasticity
- Odd stress response to a time variation of strain $T_{ii} \sim \eta_{iikl} \dot{u}_{kl}$
- In FQHS and topological SC proportional to the average angular momentum
- A new topological quantum number
- Also interesting in the quark-gluon plasma (Abanov, Gromov 2014)

Ref.: J Avron et al, PRL 75, 697 Review: C. Hoyos, 1403.4739; Torsional: T. Hughes et al, Phys.Rev. D88 (2013) 025040

Hall viscosity from Hall conductivity

Hall conductivity Hall viscosity $T_{ii} \sim \eta_H^{ijkl} \dot{u}_{kl}$, $\eta_H^{ijkl} = -\eta_H^{klij}$ $S_{CS} \sim V_H \varepsilon^{ijk} A_i \partial_j A_k$ $A_{1}^{el} = \frac{\beta}{a} (u_{11} - u_{22})$ $S \sim \eta_{H}^{ijkl} u_{ij} \dot{u}_{k}$ (Graphene) $A_{2}^{el} = -2 \frac{\beta}{a} u_{12}$ $\mathbf{S} \sim \boldsymbol{\eta}_{H}^{ijkl} \boldsymbol{u}_{ii} \dot{\boldsymbol{u}}_{kl}$ $\eta_{H} \sim v_{H} \frac{4\beta^{2}}{\sigma^{2}}$ $S_{CS} = \mathcal{V}_H \mathcal{E}^{ijk} A_i^{el} \partial_i A_k^{el} \sim \mathcal{V}_H \mathcal{E}^{102} A_1^{el} \partial_0 A_2^{el} + \dots \sim$ $\sim v_H \frac{\beta^2}{\alpha^2} 4 u_{11} \dot{u}_{12} + \dots$

Standard Hall viscosity in B:

$$\frac{\eta_{new}}{\eta_B} \sim \frac{l_B^2}{a^2} \sim \frac{10^4}{B(T)}$$

In graphene Hall conductivity $\leftarrow \rightarrow$ Hall viscosity Orders of magnitude bigger than standard

Weyl semimetals (3D graphene)

(3+1) massless QED. They exist!!

Minimal model:

$$S = \int d^4 k \overline{\Psi}_k (\gamma^{\mu} k_{\mu} - m - b_{\mu} \gamma^{\mu} \gamma^5 - e \gamma^{\mu} A_{\mu}) \Psi_k$$

Axial vector potential

(3+1) massless QED has anomalies

• A realization of Lorentz breaking QED (A. G. Grushin Phys. Rev. B 89, 081407(R) (2014))

Effective action:

$$S_{CS} = \frac{e^2}{16\pi^2} \int d^4 x \, \mathrm{K}_i \varepsilon_{ijkl} A_j \partial_k A_l$$

Anomalous Q-Hall conductivity: $\sigma_{ij} = \frac{e^2}{2\pi h} \varepsilon_{ijk} K_k$

K is the vector separating the two Weyl points

double Weyl fermions in SrSi_{2,} 1503.05868

1507.03983 Mesot group

TaP

Hasan Group

Laboratory for Topological Quantum Matter & Advanced Spectroscopy

Publications Sponsors Highlights Contact

 ${\rm Bi}_2{\rm Se}_3~{\rm Berry's}~{\rm Phase}~{\rm Topological}~{\rm Dirac}~{\rm Hedgehog}~{\rm Fermi}~{\rm Arc}~{\rm Weyl}~{\rm Majorana}~{\rm Axion}$

Discovery of Weyl Fermion Semimetal: TaAs, NbAs, SrSi₂

Theory: A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, M. Z. Hasan Paper: Nature Commun. 6:7373 (2015) (submitted Nov. 2014)

ARPES Experiments: Experimental realization of a topological Weyl semimetal phase with Fermi arc surface states in TaAs
S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, C. Zhang, R. Sankar, S.-M. Huang, C.-C. Lee, G. Chang, B. Wang, G. Bian, H. Zheng, D. Sanchez, F.-C. Chou, H. Lin, S. Jia, M. Z. Hasan
Paper: arXiv:1502.03807

Transport Experiments: Tantalum Monoarsenide: an Exotic Compensated Semimetal C. Zhang, Z. Yuan, S.-Y. Xu, Z. Lin, B. Tong, M. Z. Hasan, J. Wang, C. Zhang, S. Jia Paper: arXiv:1502.00251

and

Observation of the Adler-Bell-Jackiw chiral anomaly in a Weyl semimetal C. Zhang, S.-Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, N. Alidoust, C.-C. Lee, S.-M. Huang, H. Lin, M. Neupane, D. S. Sanchez, H. Zheng, G. Bian, J. Wang, C. Zhang, T. Neupert, M. Z. Hasan, S. Jia Paper: arXiv:1503.02630

Discovery of Weyl semimetal NbAs

S.-Y. Xu, N. Alidoust, I. Belopolski, C. Zhang, G. Bian, T.-R. Chang, H. Zheng, D. S. Sanchez, G. Chang, Z. Yuan, D. Mo, Y. Wu, L. Huang, C.-C. Lee, S.-M. Huang, B. Wang, H.-T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, and M. Z. Hasan arXiv:1504.01350

A new type of Weyl semimetal with quadratic double Weyl fermions in SrSi2 S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, M. Neupane, H. Zheng, D. Sanchez, A. Bansil, G. Bian, H. Lin, and M. Z. Hasan arXiv:1503.05868

Volume 130B, number 6 PHYSICS LETTERS 3 November 1983 THE ADLER-BELL-JACKIW ANOMALY AND WEYL FERMIONS IN A CRYSTAL

H.B. NIELSEN Masao NINOMIYA

$$[i\partial/\partial t - (\mathbf{P} - e\mathbf{A})\mathbf{\sigma}] \psi_{\mathrm{R}}(x) = 0$$
$$\dot{Q}_{5} = \frac{e^{2}}{4\pi^{2}} \vec{E} \cdot \vec{B}$$

Chiral anomaly implies charge transfer between the two chiralities with E $\scriptstyle\rm II$ B

Observation of the ABJ chiral anomaly in a Weyl semimetal

See also:

•

- 1503.01304
- 1503.08179
- 1504.07398
- PRB88, 104412
- •JCCM_MAY_2015_03

Elastic gauge fields in WSM

As in graphene, the gauge fields couple with opposite signs to the two chiralities.

$$H_W(\boldsymbol{k}) = \psi_{\pm,\boldsymbol{k}}^+ \left(\boldsymbol{\sigma}(v\boldsymbol{k}_\perp \pm \boldsymbol{A}_\perp^{el}) \mp (v_3k_3 \pm A_3^{el})\sigma_3 \right) \psi_{\pm,\boldsymbol{k}},$$

Hall viscosity from Hall conductivity

Hall conductivity \rightarrow Hall viscosity

Standard phonon HV for WSM was zero at zero T and μ

The AAA triangle anomaly

$$S = \int d^4x \bar{\psi} \gamma^{\mu} (i\partial_{\mu} + eA_{\mu} + b_{\mu}\gamma^5) \psi.$$

 $\Gamma_a[A]$

 $\Gamma_a[A^5] =$

High energy implications

No axial fields in the standard model of particle physics.

• The Hall viscosity comes

from the AAA diagram. A test of the factor 1/3.

• Axial Magnetic Effect:

$$\vec{J}_{\varepsilon} = \sigma_{AME}\vec{B}_5$$

Summary

- New mechanism for Hall viscosity in topological matter
- In WSM is was zero.

 $\Gamma[A]$

In graphene,
$$\frac{\eta_{new}}{\eta_B} \sim \frac{l_B^2}{a^2} \sim \frac{10^4}{B(T)}$$

• Other anomaly related responses.

• Straintronics in Dirac crystals.

This work: A. Cortijo K. Landsteiner Y. Ferreiros

F. de Juan

Karl Landsteiner

J. L. Mañes

Observation of the chiral anomaly in solids

 Signature of the chiral anomaly in a Dirac semimetal: a current plume steered by a magnetic field.

Authors: Jun Xiong, Satya K. Kushwaha, Tian Liang, Jason W. Krizan, Wudi Wang, R. J. Cava, N. P. Ong.

arXiv:1503.08179

 Chiral anomaly and classical negative magnetoresistance of Weyl metals Authors: D. T. Son and B. Z. Spivak.
 Phys. Rev. B 88, 104412

Recommended with a commentary by <u>Patrick Lee</u>, MIT. [View Commentary]

JCCM_MAY_2015_03

Generality of the effect: Weyl crystals

They will support elastic gauge fields

Dissipationless

 $T_{ij} = \eta_{ijkl} \dot{u}_{kl}$ Energy variation under strain: $\delta E = -T_{ij} \delta u_{ij}$ Thermod: $\delta E = T \delta s - p dV$ $T\dot{s} = -\eta_{ijkl} \dot{u}_{ij} \dot{u}_{kl}$

Measuring: Phonon Hall viscosity

Barkeshli, Chung, Qi, PRB **85**, **245107(2011)**

$$e^{-S_{eff}[\boldsymbol{u}]} = \int \mathcal{D}c^{\dagger} \mathcal{D}c e^{-S[\boldsymbol{u},c,c^{\dagger}]} \cdot S_{eff} = \frac{1}{2} \int d^{d}x dt (\rho \partial_{t} u_{j} \partial_{t} u_{j} - \lambda_{ijkl} \partial_{i} u_{j} \partial_{k} u_{l}),$$

$$\delta S = \frac{1}{2} \int d^{d+1}x d^{d+1}x' \eta_{ab}(x - x') u_a(x) \dot{u}_b(x'),$$
$$\ddot{u}_i = c_t^2 \nabla^2 u_i + (c_l^2 - c_t^2) \partial_i \nabla \cdot \boldsymbol{u} + \eta \nabla^2 \epsilon^{ij} \dot{u}_j / \rho,$$

$$\Delta \omega / \omega (\eta = 0) \sim x (\omega (\eta = 0))^2$$

- HV mixes longitudinal and transverse ac. phonon modes.
- \bullet Characteristic frequency $w_{\rm V}$
- Shifts the frequencies by $(w/w_V)^2$

TaP 1506.06577Dresden VW2E F_{γ}

Large unsaturated negative magnetoresistance

 $\frac{1}{\rho + A\,H^2} + \frac{1}{\rho' + A'\,H^2},$ $\sigma(H) = \left(\sigma_0 + a\sqrt{H}\right) \left(1 + C_W H^2\right) +$

Band topology

Wave function:

$$\Psi_n(\mathbf{r}) = \sum_{k \in B} e^{ikr} u_n(k)$$

• Berry connection:

Bloch

$$u_n(k+T) = u_n(k)$$

 $\vec{A}_n(\mathbf{k}) = \left\langle u_n(k) \middle| \vec{\nabla}_k \middle| u_n(k) \right\rangle$

• Chern number (2D):

$$C_n = \frac{1}{2\pi i} \int_{BZ} d^2 \vec{k} \cdot \vec{B}_n(\mathbf{k})$$

(A fiber bundle over BZ)

Encodes (most) topological properties of the system.

• An observable consequence:

$$\sigma_{H} = \sum_{n filled} C_{n} \frac{e^{2}}{\hbar}$$

At least two bands needed to have non trivial topology

Axial magnetic effect

$$S = \int d^4 k \overline{\Psi}_k (\gamma^\mu k_\mu - m - b_\mu \gamma^\mu \gamma^5) \Psi_k$$

$$-b^2 > m^2$$
, $b_0 = 0$

 b_0 : Energy separation \rightarrow spin-orbit coupling b_i : k separation \rightarrow density of magnetic impurities -> $b(x) \rightarrow B_5(x)$.

$$T^{0i} = J^{i}_{\epsilon} = \sigma_{AME} B^{i}_{5}.$$

$$\sigma_{AME} = \frac{\mu^{2} + \mu^{2}_{5}}{4\pi^{2}} + \frac{T^{2}}{12},$$

 $L_z = \frac{N_f}{6}T^2 b_z \mathcal{V},$ Experimental confirmation of the gravitational anomaly?

Cortijo, Grushin, Landsteiner, MAHV, PRB 89, 081407R (2014)

Topological insulators

Insulators in the bulk and conducting at the edges The first non trivial insulator: Quantum Hall system

Band insulators

Topological insulators

Massless Dirac matter appears at the interface between a normal (vacuum) and a topological insulator. 2D (1D) edge states at the surface of 3D (2D) TI. There are also crystalline 3D TI.

Elastic gauge fields in graphene

$$H = \begin{pmatrix} 0 & t_1 e^{i\vec{k}_1\vec{a}_1} + t_2 e^{-i\vec{k}_2\vec{a}_2} + t_3 e^{-i\vec{k}_3\vec{a}_3} & 0 \\ t_1 e^{-i\vec{k}_1\vec{a}_1} + t_2 e^{-i\vec{k}_2\vec{a}_2} + t_3 e^{-i\vec{k}_3\vec{a}_3} & 0 \end{pmatrix} \approx \begin{pmatrix} 0 & \frac{3\bar{t}a}{2} \left(k_x + ik_y\right) + \Delta t \\ \frac{3\bar{t}a}{2} \left(k_x + ik_y\right) + \Delta t & 0 \end{pmatrix}$$

Elasticity+low energy near a Fermi point

$$H_{K,u}^{eff} = v_F \vec{\sigma} \cdot (\vec{k} + \vec{A}) \qquad A_x = \frac{\beta}{a} (u_{xx} - u_{yy}), A_y = \frac{2\beta}{a} u_{xy}$$

 u_{ii} strain tensor, β elastic parameter

Generalizable to materials with Fermi points at non equivalent points in BZ

Hall viscosity

Journal Club for Condensed Matter Physics

A Monthly Selection of Interesting Papers by Distinguished Correspondents

ODD (HALL) VISCOSITY

1. Hall viscosity from effective field theory Authors: A.Nicolis & Dam Thanh Son, arXiv:condmat/1103.2137 Recommended with a Commentary by David Khmelnitskii, Trinity College, Cambridge | View Commentary (pdf) | JCCM_JUNE2011_02

• Hydrodynamic formulation of electronic fluids (long wavelength dynamics). Derivative expansion. Ideal hydro: dissipationless.

• Dissipation comes as first order corrections. Parametrized by kinetic coefficients (viscosities, thermal coefficients..) **T broken-> dissipationless coefficients**. In (3+1) related to anomalies.

- Avron, Seiler, and Zograf, 1995. First definition. QHE. (Berry phase in the space H[u_{ii}])
- Lorentz shear modulus: homogeneous electron gas in a magnetic field: Tokatly Vignale 2007
- Hall viscosity: N. Read. 2009. FQHE. $\eta^H = \frac{1}{2} \bar{n} \bar{s} \hbar$, (Kubo formula <T_{ij}T_{kl}>)

• Dirac fermions (torsional viscosity): Hughes, Leigh, and Fradkin, 2011

• Relativistic hydro and quark-gluon plasma: Abanov, Gromov 2014

Deformed graphene: TB beyond linear approximation

$$H = -\sum_{n=1}^{3} (t + \delta t_n) \begin{pmatrix} 0 & e^{-i(\vec{K} + \vec{q}) \cdot \vec{d}_n} \\ e^{i(\vec{K} + \vec{q}) \cdot \vec{d}_n} & 0 \end{pmatrix}$$

Expand in q: Dirac fermions Expand in $\delta t_{n:}$ Gauge fields

$$H_{trigonal} = f^{ijk} \sigma^i q^j q^k$$

Expand in both:

 $H_{v_F} = \sigma^i q^j u^{kl} f^{ijkl}$

$$A^i = \frac{2}{3a} \epsilon^{ij} f^{jkl} u^{kl}$$

Related works J. L. Mañes 2007 *Phys. Rev. B* **76 045430** Winkler R and Zulicke U 2010 *Phys. Rev. B* **82 245313** T. L. Linnik arXiv1111.3924

F. de Juan, M. Sturla, MAHV, work in progress.