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Applied AdS-CFT

Investigate strongly coupled quantum field theories via classical gravity

- growing list of applications:

Bottom-up approach:  Look for interesting behavior in simple models

• hydrodynamics of quark gluon plasma

• jet quenching in heavy ion collisions

• quantum critical systems

• strongly correlated electron systems
• cold atomic gases

• out of equilibrium dynamics

• ....
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Figure 2. Resistivity of thin films of bismuth versus temperature. The different curves correspond
to different thicknesses, varying from a 4.36 Å film that becomes insulating at low temperatures,
to a thicker 74.27 Å film that becomes superconducting. The figure is reproduced from [11].
(Reprinted with permission. Copyright (1989) by the American Physical Society.)

1.3. Quantum critical points in the real world

Quantum phase transitions are believed to be important in describing superconducting–
insulator transitions in thin metallic films, as is demonstrated pictorially by rotating figure 2
90◦ counter-clockwise. The rotated diagram is meant to resemble closely figure 1 where phase
one is an insulator, phase two is a superconductor, and g corresponds to the thickness of the
film. The insulating transition is a cross-over, while the superconducting transition might
be of Kosterlitz–Thouless type. There exists a critical thickness for which the system reaches
the quantum critical point at T = 0.

One of the most exciting (and also controversial) prospects for the experimental relevance
of quantum phase transitions is high-temperature superconductivity. Consider the parent
compound La2CuO4 of one of the classic high Tc superconductors, La2−xSrxCuO4. La2CuO4

is actually not a superconductor at all but an anti-ferromagnetic insulator at low temperatures.
The physics of this layered compound is essentially two dimensional. The copper atoms are
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Classic example of a QCP

Resistivity vs. temperature in thin 
films of bismuth

T = 0 state changes from 
insulating to superconducting at a 
critical thickness

From D.B. Haviland, Y. Liu and A.M. Goldman, 
Phys. Rev. Lett. 62 (1989) 2180.
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The explicit identification of the QCPs in these and related
HF metals has in turn helped to establish a number of properties
that are broadly important for the physics of strongly correlated
electron systems. One of the modern themes, central to a variety
of strongly correlated electron systems, is how the standard
theory of metals, Landau’s Fermi-liquid (FL) theory, can break
down (see below, first section). Quantum criticality, through its
emergent excitations, serves as a mechanism for NFL behaviour,
as demonstrated by a T-linear electrical resistivity (Fig. 1b,c).
Moreover, the NFL behaviour covers a surprisingly large part of the
phase diagram. For instance, in Ge-doped YbRh2Si2, the T-linear
electrical resistivity extends over three decades of temperature
(Fig. 1c), a range that contains a large entropy (see below). Finally,
quantum criticality can lead to novel quantum phases such as
unconventional superconductivity (Fig. 1d).

These experiments have mostly taken place over the past
decade, and they have been accompanied by extensive theoretical
studies. The latter have led to two classes of quantum criticality
for HF metals. One type extends the standard theory of second-
order phase transitions to the quantum case9–11, whereas the other
type invokes new critical excitations that are inherently quantum
mechanical12–14. The purpose of this article is to provide a status
report on this rapidly developing subject.

MAGNETIC HF METALS AND FL BEHAVIOUR

HF phenomena were first observed in the low-temperature
thermodynamic and transport properties of CeAl3 in 1975 (ref. 15).
The 1979 discovery of superconductivity in CeCu2Si2 (ref. 16)
made HF physics a subject of extensive studies. This discovery was
initially received by the community with strong scepticism, which,
however, was gradually overcome with the aid of two observations,
of (1) bulk superconductivity in high-quality CeCu2Si2 single
crystals17 and (2) HF superconductivity in several U-based
intermetallics: UBe13 (ref. 18), UPt3 (ref. 19) and URu2Si2 (ref. 20;
W. Schlabitz, et al., unpublished). Around the same time, it was
recognized that CeCu2Si2, CeAl3 and other Ce-based compounds
behaved as ‘Kondo-lattice’ systems21.

KONDO EFFECT

Consider a localized magnetic moment of spin h̄/2 immersed
in a band of conduction electrons. The Kondo interaction—an
exchange coupling between the local moment and the spins of
the conduction electrons—is AF. It is energetically favourable for
the two types of spin to form an up–down arrangement: when
the local moment is in its up state, |"i, a linear superposition
of the conduction-electron orbitals will be in its down state,
|#ic, and vice versa. The correct ground state is not either of
the product states, but an entangled state—the Kondo singlet,
(1/2)(|"i|#ic � |#i|"ic). One of the remarkable features is
that there is a Kondo resonance in the low-lying many-body
excitation spectrum. The singlet formation in the ground state
turns a composite object, formed out of the local moment
and a conduction electron, into an elementary excitation with
internal quantum numbers that are identical to those of a bare
electron—spin h̄/2 and charge e. Loosely speaking, because of the
entanglement of the local moment with the spin degree of freedom
of a conduction electron, the local moment has acquired all the
quantum numbers of the latter and is transformed into a composite
fermion. We will use the term Kondo eVect to describe the
phenomenon of Kondo-resonance formation at low temperatures.

At high temperatures, on the other hand, the system wants
to maximize the entropy by sampling all of the possible
configurations. It gains free energy by making the local moment
essentially free, which in turn weakly scatters the conduction
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Figure 1 Quantum critical points in HF metals. a, AF ordering temperature TN versus
Au concentration x for CeCu6�xAux (ref. 7), showing a doping-induced QCP.
b, Suppression of the magnetic ordering in YbRh2Si2 by a magnetic field. Also shown
is the evolution of the exponent ↵ in 1⇢ ⌘ [⇢ (T )�⇢0] / T ↵ , within the
temperature–field phase diagram of YbRh2Si2 (ref. 55). Blue and orange regions
mark ↵ = 2 and 1, respectively. c, Linear temperature dependence of the electrical
resistivity for Ge-doped YbRh2Si2 over three decades of temperature (ref. 55),
demonstrating the robustness of the non-Fermi-liquid (NFL) behaviour in the
quantum-critical regime. d, Temperature-versus-pressure phase diagram for
CePd2Si2, illustrating the emergence of a superconducting phase centred around the
QCP. The Néel (TN) and superconducting (Tc) ordering temperatures are indicated by
filled and open symbols, respectively79.

electrons; this is the regime of asymptotic freedom, a notion
that also plays a vital role in quantum chromodynamics. It is
in this regime that Kondo discovered logarithmically divergent
correction terms in the scattering amplitude beyond the Born
approximation22. Kondo’s work opened a floodgate to a large body
of theoretical work23, which, among other things, led to a complete
understanding of the crossover between the high-temperature
weak-scattering regime and the low-temperature Kondo-singlet
state. This crossover occurs over a broad temperature range, and is
specified by a Kondo temperature; the latter depends on the Kondo
interaction and the density of states of the conduction electrons
at the Fermi energy. We will use Kondo screening to refer to the
process of developing the Kondo singlet correlations as temperature
is lowered.

KONDO LATTICE AND HEAVY FERMI LIQUID

HF metals contain a lattice of strongly correlated f electrons and
some bands of conduction electrons. The f electrons are associated
with the rare-earth or actinide ions and are, by themselves, in a
Mott-insulating state: the on-site Coulomb repulsion is so much
stronger than the kinetic energy that these f electrons behave as
localized magnetic moments, typically at room temperature and
below. They are coupled to the conduction electrons via an (AF)
Kondo interaction. In theoretical model studies, only one band of
conduction electrons is typically considered. Such a coupled system
is called a Kondo lattice.

It is useful to compare the HF metals with other strongly
correlated electron systems. The Mott-insulating nature of the f
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From P. Gegenwart, Q. Si and F. Steglich, 
Nature Phys. 4 (2008) 186.



As discussed in the theory section, UCu5!xPdx has
been an important system for investigating the role of
disorder in non-Fermi-liquid behavior. Using magnetiza-
tion as a function of field curves at several low tempera-
tures (T!1.8 K) to determine the fit parameters, Bernal
et al. (1995) determined a distribution P(TK) of Kondo
temperatures for their x"1.0 and 1.5 samples prepared
similarly to the samples of Andraka and Stewart (1993).
These distributions, shown in Fig. 11, depend on the
saturation observed in M vs H at low temperatures
caused, in the disorder models, by the uncompensated,
low-TK moments. Obviously a system with little or no
saturation in M vs H at low temperatures is not a candi-
date for these models. Bernal et al. (see also MacLaugh-
lin et al., 1996) then use the determined fit parameters to
see how well these describe their measured (large and
strongly temperature-dependent) inhomogeneous NMR
linewidths for these two compositions. They find a quali-
tative (factor of 2) agreement between the measured
linewidths and those that would be caused by the calcu-
lated, parameter-fixed distribution of magnetic suscepti-
bility (induced via static disorder). A similar agreement,
within a factor of 2, between the measured field depen-
dence of the specific heat for UCu4Pd and UCu3.5Pd1.5
and that calculated from their model (shown for
UCu4Pd in Fig. 8) using parameters determined by fit-
ting M vs H data was also obtained by Bernal et al.

The somewhat long-standing controversy over
whether the as-prepared UCu4Pd consists of ordered
sublattices or not (in the AuBe5 structure there are four
Be I and one Be II sites per formula unit)2 has been
recently decided by "SR relaxation measurements down
to 3 K by MacLaughlin et al. (1998) and extended x-ray-

absorption fine-structure (EXAFS) work by Booth et al.
(1998) on unannealed UCu4Pd and by lattice parameter
measurements and resistivity measurements (mentioned
above) down to 0.08 K by Weber et al. (2001) on an-
nealed UCu4Pd. Analysis of the width of the frequency
shift distribution of the "SR relaxation data led
MacLaughlin et al. to argue for considerable magnetic
susceptibility inhomogeneity in unannealed UCu4Pd, in
agreement with the NMR linewidth results of Bernal
et al. On a microscopic basis, the EXAFS data of Booth
et al. on unannealed UCu4Pd indicate that—rather than
having all the Pd on the Be I site and all the Cu on the
Be II site—24#3% of the Pd occupies Be II sites. Fi-
nally, as shown clearly in Fig. 12, the work of Weber
et al. found that annealing UCu4Pd causes a decrease in
the heretofore accepted lattice parameter, which, as dis-
cussed in the caption for Fig. 12, implies qualitatively
that—as shown quantitatively by Booth et al.—a signifi-
cant amount of Pd must occupy the smaller Be II sites in
unannealed UCu4Pd. In addition, Weber et al. find a
strong decrease in the residual resistivity (see Table II),
implying that at least some of the Pd in the unannealed
sample was occupying inequivalent sites. It would be in-
teresting to measure NMR linewidths and/or "SR relax-
ation in the annealed UCu5!xPdx samples.

Certainly the lack of spin-glass behavior at low tem-
peratures for annealed UCu4Pd (Weber et al., 2001) ar-
gues strongly both for close attention to sample quality,
especially in systems in which disorder is thought to play
an important role, and for measurements to the lowest
temperatures possible. As an example of the importance
of the latter, presumably the short correlation length be-
tween spins and rapid relaxation rate reported in the T
!3 K "SR work of MacLaughlin et al. (1998) is not
characteristic of the sample as it approaches T"0, i.e.,
for T$T(#ac peak).

c. UCu5!xPtx (II)
Chau and Maple (1996) and Chau et al. (2001) inves-

tigated UCu5!xPtx (Pt is isoelectronic to Pd) and, as in-
dicated by the subsection heading, found no spin-glass
behavior, making this doped non-Fermi-liquid system
one of the few examples known in which—when
investigated—the disorder inherent with doping does
not cause frustrated local moments (at least down to 1.8
K, the lowest temperature of measurement). One pos-
sible reason is that, unlike UCu5!xPdx , the end point in
the UCu5!xPtx phase diagram (i.e., UPt5) occurs in the
same structure (AuBe5) as UCu5, although Chau et al.
(2001) report that there are impurity phases present in
UCu5!xPtx for 2.5$x$4.0. The electrical resistivity in-
creases below room temperature for x"0.5 and 0.75,
where the temperature behavior between 1.4 (lowest
temperature of measurement) and 20 K follows the clas-
sic non-Fermi-liquid %"%0!AT (see Table II) similar to
UCu5!xPdx for x"1.0 and 1.5. (Note, however, that TN
is still finite—&5 K—as determined by a cusp in the
magnetic susceptibility for x"0.5.) Chau et al. (2001)
note that there is a distinct minimum in the residual

2Bernal et al. argue for similar disorder present in both x
"1 and 1.5 alloys, while Chau, Maple, and Robinson (1998),
using elastic neutron-diffraction measurements, argue that Pd
and Cu occupy different sublattices in UCu4Pd.

FIG. 7. 5f electronic specific heat, 'C , divided by temperature
vs log T for both Y0.8U0.2Pd3 and Y0.9U0.1Pd3, after Maple et al.
(1996). Note the positive deviation from the log T behavior
below &0.25 K.
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measurement) and !2.5 K fit either a !log T or T1""

approximately equally well, as do # data between 1.8
and 6 K, with "!0.9. The resistivity behaves like $#$0
"AT% between 1.8 and 15 K, with %#1.6, 1.2, 1.1, 1.1
for x#0.15, 0.3, 0.35, 0.4, respectively. Other than the
smaller % exponent for the resistivity, no difference is
observed in the non-Fermi-liquid behavior near the sup-
pression of antiferromagnetism in URu2!xRexSi2 at x
#0.15 vis à vis the creation of ferromagnetic behavior at
x#0.4. Further work on this system is in progress.

q. U2Pd1!xSi3"x (II)
Homma et al. (2000) report that non-Fermi-liquid be-

havior occurs in this system at x#0.4 and 0.5, just at the
point in the phase diagram where, with increasing x,
spin-glass behavior is suppressed. Thus this may be an
ideal system in which to check the theory of Sengupta
and Georges (1995) for a quantum critical point in the
phase diagram where T freezing→0, where T freezing in a
spin glass is the temperature below which, for example,
#FC begins to differ from #ZFC . The samples of
U2Pd1!xSi3"x were annealed for one week at 800 °C,
but the difference in annealed and unannealed proper-
ties was not investigated. Both C/T and # were mea-
sured only down to 1.8 K; both were found to follow
T!1"" up to 7.5 and 17 K, respectively, with, however,
differing " values: "C#0.82 (0.85) for x#0.4 (0.5), "#
#0.61 (0.62) for x#0.4 (0.5).

r. Ce0.1La0.9Pd2Al3 (III)
CePd2Al3 is a hexagonal antiferromagnet, TN#2.8 K,

occurring in the same structure as UPd2Al3. Polycrystal-
line samples of Ce0.1La0.9Pd2Al3 were prepared and an-
nealed at 900 °C for five days, with no mention of the
effect of annealing on the measured properties, and then
characterized for non-Fermi-liquid behavior by $, #, and

C/T measurements (Nishigori et al. 1999). Although no
statement was given at what composition the La doping
suppressed TN , presumably—based on doping results
on similar systems—TN→0 before the Ce concentration
was reduced to 10%. C/T(#)&log T between 1.5 and 7
K (1.9 and 7 K), while $&$0!AT0.5 between 1.7 and 9
K. Nishigori et al. pointed out that a hexagonal Ce sys-
tem could be described by the quadrupolar Kondo
model of Cox. As discussed above in the theory section,
the multichannel Kondo model, of which the quadrupo-
lar Kondo model is one variation, predicts C/T and #
&log T for n#2, S# 1

2 as well as $!$0&AT0.5. An ex-
perimental finding, however, of the T0.5 dependence in
the resistivity is unusual; measurements to lower tem-
peratures are under way.

s. U0.1M0.9In3, M#Y,Pr,La (I)
Cubic UIn3 is an antiferromagnet, TN#95 K. Hirsch

et al. (2001) found that, far from where doping on the U
site has already driven TN→0, there is a maximum in
the low-temperature C/T values vs doping at the 10% U
concentration for all the dopants tried (Y, Pr, and La).
An investigation of the temperature dependence of the
specific heat led to the discovery that C/T&log T be-
tween 0.07 and 2 K. In addition, the partial substitution
of 4-valent Sn for 3-valent In led to an enhancement of
the low-temperature C/T values by &30% (see Table
II). Spin-glass behavior (divergence of #FC and #ZFC)
below &7 K was observed.

t. CePt0.96Si1.04 (I?)
Götzfried et al. (2001) have recently tuned the heavy-

fermion system CePtSi (see also work below in Sec.
III.A.2 on CePtSi1!xGex) to non-Fermi-liquid behavior
by varying the Pt/Si ratio. At CePt0.9Si1.1 they see an
anomaly in C/T at &0.3 K that may be due to a spin-
glass transition. When the Si content is decreased below
this concentration to the CePt0.96Si1.04 composition, the

FIG. 13. logC/T vs log T for U0.07Th0.93Ru2Si2, data from Am-
itsuka and Sakakibara (1994). This replot of the original data,
where C/T was plotted vs log T, demonstrates a substantial
temperature range of agreement for C/T&T!1"", or the
Griffiths-phase model, which was applied to non-Fermi-liquid
systems after the data were published.

FIG. 14. C5f /T vs log T for UxTh1!xPt2Si2, where C5f equals
Cmeasured!C lattice , after Amitsuka, Hidano, et al. (1995). The
data exhibit a concave curvature as plotted vs log T over the
whole temperature range up to 10 K.
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Some measured c/T values in heavy fermion metals



Quantum critical points

Physical systems with z = 1, 2, and 3 are known --  non-integer values of z are also possible

T = 0Typical behavior at 

characteristic energy  

coherence length ⇠ ⇠ (g � gc)�⌫

� ⇠ (g � gc)z⌫

z  = dynamical scaling exponent� ⇠ ⇠�z

z > 1   scale invariance without conformal invariance - asymptotically Lifshitz spacetime
z = 1   scaling symmetry is part of  SO(d+1,1)  conformal group = isometries of adSd+1

Scale invariant theory at finite T : ⇠ = c T�1/z

Deformation away from fixed pt.: �i ⇠ (length)�1 �i = 0QCP  has

Quantum critical region : ⇠ = T�1/z ⌘(T�1/z�i) ⌘(0) = c

2nd order 
critical pt.



Models with Lifshitz scaling

A: Look for a gravity theory in d +2 dim’s with spacetime metric of the form

which is invariant under 

Q: Can we give a gravity dual description of a strongly coupled system 
     which exhibits anisotropic scaling?
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Kachru, Liu, & Mulligan ’08
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Holographic models with Lifshitz scaling

d = 3, 2, or 1 for CM applications  

Einstein-Maxwell-Proca model
Kachru, Liu, & Mulligan ’08;    Taylor ’08;    Brynjólfsson et al. ’09

Einstein-Maxwell-Dilaton model
Taylor ’08;    Tarrío & Vandoren ’11

we will take N = 1 or 2
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Fixed point metric

EMP model:

Aµ = 0

x = (x1, . . . , xd)

is a solution of both models for particular values 
of couplings and background fields

The Lifshitz metric

EMD model:

ds2 = �r2zdt2 + r2dx2 +
dr2

r2

c =
p
z d, ⇤ = �z2 + (d� 1)z + d2

2

A
t

=

r
2(z�1)

z
rz, A

xi = A
r

= 0

�1 = �
r

2d

z�1
, ⇤ = � (d+ z)(d+ z � 1)

2
, e� =

✓
r

r0

◆p2d(z�1)

F (1)
rt = 2rz�1

0

p
(d+z)(z�1)

✓
r

r0

◆d+z�1

, F (2)
µ⌫ = 0



Gravity duals at finite temperature

z  =  1 :   AdS-Reissner-Nordström BH in d+2 dimensions

z  >  1 :   charged BH in d+2 dimensional z > 1 gravity model

periodic Euclidean time:  

   introduces an energy scale:    scale symmetry is broken

thermal state in field theory:   black hole with

finite charge density in dual field theory:   electric charge on BH 

magnetic effects in dual field theory:   dyonic BH

⌧ ' ⌧ + �, � =
1
T

THawking = Tqft

�



Black brane solutions in EMD model  (d = 2)

ds2 = �r2zb(r)dt2 + r2dx2 +
dr2

r2b(r)
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Tarrío & Vandoren ’11

AdS-RN black hole: z ! 1

2 Preliminary holographic notions 3

versus ‘mesonic’ phases. The precise meaning of these terms will be made
clear in what follows.

2 Preliminary holographic notions

There exist certain quantum field theories in which the locality of the renor-
malisation group (RG) flow can be (usefully) geometrically realised. This is a
feature of the holographic correspondence that will be central to our discus-
sion. The basic idea is to append an extra spatial dimension to the spacetime
of the quantum field theory. This extra dimension will correspond to the RG
scale as illustrated in figure 1 below. In contrast to the fixed ‘boundary’ field

/RQJ�
GLVWDQFHV

6KRUW�
GLVWDQFHV

Figure 1 The extra radial dimension in holography corresponds to the
renormalisation group scale. Processes in the interior determine long dis-
tance physics, the IR, of the dual field theory while processes near the
boundary control the short distance, or UV, physics.

theory spacetime, the ‘bulk’ spacetime with an extra dimension will be dy-
namical. The boundary conditions set at infinity in the bulk correspond to
the UV values of couplings in the field theory. Solving the gravitational equa-
tions of motion is dual to following the RG flow down in energy scales. A
modern presentation of the holographic renormalisation group may be found
in [4, 5]. For our purposes we will only need the mental picture of figure 1 as
a way of organising our thoughts about asymptotically AdS spacetimes. The
asymptotic spacetime describes the UV of the quantum field theory while
the interior of the spacetime describes the IR.
At this point we can understand why AdS spacetime plays a privileged role

in discussions of holography. The simplest quantum field theories are those
that exhibit no RG flow at all, i.e. that are scale invariant. AdS spacetime is
the geometrisation of this invariance for a relativistic quantum field theory.

(from S. Hartnoll, arXiv:1106.4342)



Quantum Lifshitz model and 1+1 CFT

Euclidean action:

Equal to 2-point function of 2 dimensional free scalar

Equal time correlators:  
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Vacuum autocorrelators

Equal to 2-point function of 2 dimensional free scalar:

Autocorrelators:  hO↵1(x, t1)O↵2(x, t2). . .O↵n(x, tn)i
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Wick contraction gives 2 point function of scaling operators 
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Thermal state autocorrelators

Thermal 3-point function:

Matsubara sum:  
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Holographic correlation functions
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Bulk scalar field:
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Geodesics in Lifshitz spacetime

Lifshitz metric:

Geodesic equations:

(assume endpoints lie on x axis) 

The resulting 2- point function has a scaling form:
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ẋ = p,

u̇

2

u

2
= 1� u

4
E

2 � u

2
p

2

5 10 15 20 25 30
a

0.2

0.4

0.6

0.8

1.0
F

Quantum Lifshitz

Holographic model

= x

2
/⌧

GE(r, ⌧) /
1

x

4�̃
F (x2

/⌧)2�̃ �̃ = m/2

x

2 ⌧ ⌧

GE(x, t) /
1

⌧

2�̃

⇣
1� 2�̃

⇡

x

2

⌧

+ ...

⌘



Bulk-to-boundary propagator:

The Lifshitz metric can be rewritten:

Saddle point evaluation: 

Three-point function in Lifshitz spacetime

Consider a bulk theory with a 3-point vertex: 

To leading order the 3 point function is then given by:
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This has the same form as a 3 point function in a 1+1 dimensional CFT!



Thermal autocorrelators

Lifshitz black hole:

Thermal 2-point function:

ds2 =
f(u)

u4
d⌧2 +

du2

u2f(u)
+

dx2

u2
, f(u) = 1� u4

GE(⌧2, x; ⌧1, x) /
 

⇡T

sin(⇡T |⌧21|)

!2�̃

Identical to thermal autocorrelator in the quantum Lifshitz model! 

Geodesics that contribute to autocorrelator only involve
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Mapping to BTZ black hole:
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BTZ geometry is dual to a thermal state in 1+1 dimensional CFT  



Dynamical solutions     EMD model,   d = 2
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Lifshitz-Vaidya solution: m̃ ! m̃(v) , ⇢̃ ! ⇢̃(v)

Rewrite static black brane solution using dv = dt+
r�z�1

b(r)
dr

ds2 = �r2zb(r)dv2 + 2rz�1dv dr + r2dx2

determined by incoming energy and charge densitym̃(v) , ⇢̃(v)

The time and radial parts of metric can be mapped to a BTZ-Vaidya solution 

Keränen, Keski-Vakkuri, & L.T. ‘11

2-point autocorrelators can then be obtained from autocorrelators calculated in  

BTZ-Vaidya spacetime 
Balasubramanian, Bernamonti, Craps, Keränen, Keski-Vakkuri, Müller, L.T., Vanhoof  ‘12



Summary

• Black branes in asymptotically Lifshitz spacetime provide a window onto finite 
temperature effects in strongly coupled models with anisotropic scaling.

• Analytic black brane solutions are available for all physical values of d and z in 
an Einstein-Maxwell-Dilaton (EMD) model, at the price of having a strongly 
coupled background gauge field (that does not couple directly to other gauge 
fields or matter).

• Autocorrelators of scaling operators are identical in the quantum Lifshitz model 
and in a strongly coupled Lifshitz model with a holographic dual.

• Vacuum autocorrelators in the holographic model at any value of z and d can be 
expressed in terms of autocorrelators of a 1+1 dimensional CFT.

• Thermal autocorrelators at z = d can also be expressed in terms of the 1+1 
dimensional CFT.

• These methods can be used to study out-of-equilibrium phenomena in Lifshitz 
models:  

- mass quench in the quantum Lifshitz model
- holographic quench in Lifshitz-Vaidya spacetime


