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(Tc ¼ 96K; H.E. et al., manuscript in preparation). In order to
facilitate comparison with earlier publications8–10 we also present 1/
t(q) for a number of temperatures, adopting qp=2pc¼
19;364cm21 for the plasma frequency (where c is the velocity of
light). The scattering rate 1/t(q) increases approximately linearly as
a function of frequency, and when the temperature T is increased,
the 1/t(q) curves are shifted vertically proportional toT. The notion
that 1=tðq;TÞ, qþT in the copper oxides forms one of the centre
pieces of the marginal Fermi liquid model1,11, and it has been shown
to be approximately correct in a large number of experimental
papers8–10. This phenomenology stresses the importance of tem-
perature as the (only) relevant energy scale near optimal doping,
which has motivated the idea that optimally doped copper oxides
are close to a quantum critical point1. As can be seen in Fig. 1, 1/t(q)
has a negative curvature in the entire infrared region for all
temperatures, and it saturates at around 5,000 cm21. Although
this departure from linearity may seem to be a minor detail, we
will see that it is a direct consequence of the quantum critical scaling
of the optical conductivity.
If a quantum phase transition indeed occurs at optimal doping

x ¼ xc , then threemajor frequency regimes of qualitatively different
behaviour are expected2: (1) q , T; (2) T , q , Q; (3) Q , q. As
we now report, we find direct indications of these regimes in our
optical conductivity data.
Region 1 (q , T) corresponds to measurement times long

compared to the compactification radius of the imaginary time,
LT ¼ !h=kBT (see Methods). Some ramifications have already been
discussed above. In addition, Sachdev2 showed that in this regime
the system exhibits a classical relaxational dynamics characterized
by a relaxation time tr ¼ ALT (A is a numerical prefactor of order 1),
reflecting that temperature is the only scale in the system. For
the low frequency regime we expect a Drude form j1ðqÞ ¼
ð4pÞ21q2

prtr=ð1þq2t2r Þ; where qpr is the plasma frequency. Then
Tj1(q,T) becomes a universal function of q/T, at least up to a
number of order one:

!h

kBTj1ðq;TÞ
¼ 4p

Aq2
pr

1þA2 !hq

kBT

! "2
 !

ð1Þ

In the inset of Fig. 2 we display !h=ðkBTj1Þ as a function of u¼

!hq=kBT: Clearly the data follow the expected universal behaviour
for u , 1.5, with A ¼ 0.77. The experimental data are in this regard
astonishingly consistent with Sachdev’s predictions, including
A < 1. From the fitted prefactor we obtain q pr /
2pc ¼ 9,597 cm21. Above we have already determined the total
spectral weight of the free carrier response, (q p/
2pc)2 ¼ 19,3642 cm22. Hence the classical relaxational response
contributes 25% of the free carrier spectral weight. These numbers
agree with the results and analysis of Quijada et al.8. This spectral
weight collapses into the condensate peak at q ¼ 0 when the
material becomes superconducting8. In Fig. 2 we also display the
scaling function proposed by Prelovsek12, j1ðqÞ ¼ Cð12
expð2!hq=kBTÞÞ=q: The linear frequency dependence of this for-
mula for !hq=kBT ,, 1 is clearly absent from the experimental data.
The universal dependence of Tj1(q,T) on q/T also contradicts the
“cold spot model”13, where Tj1(q,T) has a universal dependence on
q/T2.

In region 2 (T , q , Q) we can probe directly the scale invar-
iance of the quantum critical state. Let us now introduce the scaling
relation along the time axis, as follows from elementary considera-
tion. The euclidean (that is, imaginary time) correlator has to be
known in minute detail in order to enable the analytical continu-
ation to real (experimental) time. However, in the critical state
invariance under scale transformations fixes the functional form of
the correlation function completely: It has to be an algebraic
function of imaginary time. Hence, it is also an algebraic function
of Matsubara frequency qn ¼ 2pn/LT, and the analytical continu-
ation is unproblematic: (1) Scale invariance implies that j1(q) and
j2(q) have to be algebraic functions of q, (2) causality forces the
exponent to be the same for j1(q) and j2(q), and (3) time reversal

 

           

Figure 2 Temperature/frequency scaling behaviour of the real part of the optical
conductivity of Bi2Sr2Ca0.92Y0.08Cu2O8þd. The sample is the same as in Fig. 1. In a, the
data are plotted as ðq=q0Þ0:5j1ðq;T ÞÞ: The collapse of all curves on a single curve for
!hq/k BT . 3 demonstrates that in this q/T-region the conductivity obeys j1ðq;T Þ ¼
q20:5 gðq=T Þ ¼ T20:5hðq=T Þ: Note that g(u) ¼ u 0.5h(u). In b, the data are presented
as !h/(k BTj 1(q,T )), demonstrating that for !hq/k BT , 1.5 the conductivity obeys

j 1(q,T ) ¼ T 21f (q/T ).

 

Figure 3 Universal power law of the optical conductivity and the phase angle spectra of

optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8þd. The sample is the same as in Fig. 1. In a, the
phase function of the optical conductivity, Arg(j(q)) is presented. In b, the absolute value
of the optical conductivity is plotted on a double logarithmic scale. The open symbols

correspond to the power law jj(q)j ¼ Cq 20.65.
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outline
• motivation 

• a model for non fermi liquids 

• results 

• more general geometries 

• outlooks
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DC conductivity
• in translational invariance systems the DC 

conductivity is infinity 

• to have a finite DC conductivity translations must 
be broken 

• in holography it is possible to have also finite 
conductivities using DBI systems in the probe 
approximation
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Breaks relativistic invariance

the model
(Massless) Fundamental matter in the probe limit on a 
background of adjoint matter quantized in light cone 

coordinates.



the model
• AdS-Schwarzschild metric in light-cone coordinates 

• DBI action (probe limit) 

• Light-cone electric field switched on 
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[E. Kiritsis et. al 2012]



�2 = �2
0(�

2
DR + �2

QC)

J2 ⇠ ⇢2

E3
t ⇠ T

E1/2

scaling variables

DC conductivity

8

computing DC conductivity using 
Karch O’Bannon
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A(t) = t2 +
p
1 + t4

computing DC conductivity using 
Karch O’Bannon

[E. Kiritsis et. al 2012]
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parameter space
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now we switch on fluctuations for the gauge field on top of the 
previous background configuration



results (analytics) 
Schrödinger problem & optical 

conductivity
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results (numerics) 
Drude behavior
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results (numerics) 
full optical conductivity
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results (numerics) 
full optical conductivity
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Summary I

• the DBI model has an UV power law with exponent -1/3 
• intermediate regime that can not be seen from analytics 

arguments 
•  in absence of charge density no “Drude peak”, only the 

UV power law appear 
• the charged system shows a “Drude peak” 
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conductivity for  
uncharged gauge field
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conductivity for  
uncharged gauge field

conductivity for  
charged gauge field
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Summary II
• to have negative exponent in EMD systems it is 

necessary at least two gauge fields 
• full AC conductivity with the full RG flow geometry has to 

be computed 
• are the scaling tales completely determined by the “pair 

creation” physics in general systems?


