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Principal Chiral Sigma Model (PCSM) in 1+1 dimensions:

Lagrangian: L = N
2g2

0
Tr ∂µU†∂ µU, U ∈ SU(N).

Currents (no central charge):

jLeft
µ (x)b = iTr tb ∂µU(x)U(x)† , jRight

µ (x)b = iTr tbU(x)†∂µU(x) .

Hamiltonian:

H=
∫

dx1 1
2g2

0
{[ jL

0 (x)b]
2+[ jL

1 (x)b]
2}=∫ dx1 1

2g2
0
{[ jR

0 (x)b]
2+[ jR

1 (x)b]
2}.
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Why study large-N PCSM?

Answer 1. Interesting in its own right!
• Asympt. free, matrix QFT. NO conf. inv. or supersymmetry.

1/N ≈ 0 sad.-pt. methods fail. Unit S matrix, but not free QFT.
• 2-point function valid at all length scales. It thereby provides

a yardstick that other methods can be compared to (should they
succeed).
• Temperature> 0 (A. Cortés Cubero, PRD91 105025 (2015)).
Answer 2. Applications! A. Cortés Cubero and me.
• Yang-Mills string tensions and mass gaps at WEAK COUPLING

in d=2+1. Not fully Lorentz inv., but no worse than Hamiltonian
strong-coupling exp. in lattice gauge theory.
•Massive Yang-Mills in d=1+1. Dynamical mass reduction (the

actual masses are corrections to twice the PCSM mass - not the
YM mass).
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A quote concerning SU(∞) PCSM:

“A quantitative check of these guesses has not yet been done.
There are no doubts, however, that the mystery of the large N limit
for chiral fields will soon be resolved.” - A. M. Polyakov, Gauge
Fields and Strings, Harwood Academic Publishers (1987).

Scaling field is Φ(x)∼ Z−1/2 U(x) (equality only in Green’s func-
tions):

〈0|Φ(0)ba |A,θ ,d,c〉in =
1√
N

δacδbd,

where A indicates an antiparticle and θ is its rapidity.

The fields Φ, Φ† are not unitary, in general (N×N complex matri-
ces).
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Pert. RG: U = eiAαtα , L = N
2g2

0
gαβ(A) ∂µAα∂ µAβ ,

gαβ(A) =
[

cosh(A· f−1l)
(A· f )2

]
αβ

= δαβ +
1

12 fαργ fγσβ AρAσ + · · ·

= δαβ +
1
3

RραβσAρAσ + · · · (Riemann normal coordinates).

The (time-ordered) correlator in perturbation theory:
1
N

Tr〈U(x)U(0)†〉' exp− 1
2N

Tr〈A(x)A(0)〉= exp
[

N2−1
4πN

g2
0

N
ln(|x|Λ)

]
.

Beta function:
∂g2

0
∂ lnΛ

=−β1g4
0+ · · · , β1 =

1
8π
.

Anomalous dimension: ∂ lnG(|x|, Λ)
∂ lnΛ

= γ1g2
0+ · · · , γ1 =

N2−1
4πN2 .

Universal behavior at short distances. As Λ→ ∞ (criticality),

G(|x|,Λ)' G(Λ|x|)'C lnγ1/β1(Λ|x|).

But γ1/β1 = 2N2−1
N2 → 2, as N→ ∞.
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The 2-point function, and more results (not discussed here), were
obtained combining the 1/N-expansion with the form-factor boot-
strap. Integrability of the PCSM is used, but perhaps is inessential.

It is striking how the short-distance behavior G(m|x|)→C ln2(m|x|),
emerges from the expression for the Wightman function, with no
use of perturbation theory.
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The S matrix bootstrap in 1+1 dimensions.

In integrable QFT’s, unitarity and factorization (Yang-Baxter equa-
tion) determine the exact S matrix, up to CDD ambiguities. Often
(not always) these ambiguities can be eliminated by:

• Kinematic restrictions, e.g., the sine-law for bound states.

• Other knowledge about the spectrum.

• Comparison with perturbation theory in the coupling constant or
(in the case of isovector models) 1/n, n=no. of. components.

Alternatively, use Bethe’s Ansatz, which works for certain systems,
e.g., spin chains. Often tricky to identify the Bethe-Ansatz-solvable
model with a QFT.

The simplest two-particle S matrix is that of the Ising field theory,
L = 1

2∂µφ∂ µφ −λ (φ 2−β ), λ → ∞. It is S =−1.
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The form-factor bootstrap in 1+1 dimensions.

Early determinations of some form factors for sinh-Gordon, sine-
Gordon, Ising, O(n) sigma/Gross-Neveu,... made from PCT (Wat-
son’s theorem), the reduction formula, Lorentz invariance and cross-
ing. Later, F. Smirnov formulated axioms.

Again, there are ambiguities. Sometimes we can fix these by com-
parison with perturbation theory, 1/n-expansions, etc. Models with
rich spectra of bound states, sine-Gordon, SU(N) chiral Gross-Neveu,
PCSM, are technically harder than others.

FF = 〈0|Φ(x)|p1, . . . , pm〉in = 〈0|Φ(x)|θ1, . . . ,θm〉in,

〈0|Φ(x)Φ(0)|0〉= ∑
X
〈0|Φ(x)|X〉in in〈X |Φ(0)|0〉.

To find correlators, all form factors are needed. 1st few terms agrees
with Monte-Carlo results.
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〈0 |Φ(0) |θ1, θ2, . . . , θm 〉in

=

'

&

$

%
Φ(0)

θ1 θ2

t t t
θm

For Ising FT, in the unmagnetized phase, Φ = Z−1/2φ , 〈0|Φ|θ〉= 1
(normalization) and

〈0|Φ(x)|θ1, . . . ,θm〉in ∼∏
j<k

tanh
θ j−θk

2
.

The first few form factors work fairly close to the critical point,
giving approximately 〈Φ(x)Φ(0)〉 ∼ |x|−1/4 (Yurov and Zamolod-
chikov, Cardy and Mussardo 1990).
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S Matrix of PCSM

Polyakov+Wiegmann (1983), Abdalla2+Lima Santos (1984), Wieg-
mann (1984)

Spectrum: mr = msin(πr/N)
sin(π/N) , r = 1, . . . ,N−1.

Elementary color dipoles r = 1 (qq̄), bound states r > 1. Elementary
antiparticle: r =N−1. θ = θ12 = θ1−θ2, mcoshθ j =E j, msinhθ j =
p j. For r� N, mr = mN−r ≈ mr, and binding energy is zero. Sur-
viving bound states are heavy, mr ∼ N, except mr−1 = m1 = m.

(r=1) by (r=1) S-matrix, sans kinematic factors:

S11(θ)=
sin(θ/2−πi/N)
sin(θ/2+πi/N) SCGN(θ)⊗SCGN(θ),

SCGN(θ)=
Γ(iθ/2π+1)Γ(−iθ/2π−1/N)
Γ(iθ/2π+1−1/N)Γ(−iθ/2π)(1l− 2πi

Nθ
P).

Crossing θ → πi−θ and fusion, give full S matrix.The residue of
bound-state poles is order 1/N.
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Smirnov’s axioms.
1. Scattering Axiom (Watson’s theorem, implied by PCT):

'

&

$

%
Φ(0)

θ1

t t t
θ j θ j+1

t t t
θm

=

'

&

$

%
Φ(0)

θ1

t t t

θj+1θ j

t t t
θmS��

��

2. Periodicity Axiom (generalized crossing):

'

&

$

%
Φ(0)

θ1 θ2

t t t
θm

=

'

&

$

%
Φ(0)

θ1−2πi θ2 θ3

t t t
θm
��

' $
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3. Annihilation Pole Axiom (reduction formula):

1
2i Res

θ12 = iπ

'

&

$
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4. Lorentz Invariance Axiom (for boost χ):

'

&

$

%
Φ(0)

θ1

t t t
θm

=

'

&

$

%
Φ(0)

θm+χ

t t t
θl+χ

5. Bound-State Pole Axiom:
There are poles on the imaginary axis of rapidity differences θ jk,

due to bound states.

6. Maximal Analyticity Axiom:
Form factors are holomorphic, except possibly for bound-state

poles or annihilation poles, for rapidity differences θ jk, in the com-
plex strip 0 < Im θ jk < 2π . More guideline than axiom (may fail!).

Comments: Axiom 1. is nontrivial because contractions from SPA

are order N. Axiom 2. is valid, despite the breakdown of crossing.
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Why isn’t the large-N limit trivial?
• The S matrix becomes unity in this limit. All the interactions are

powers of 1/N.

• But acting on a form factor with SPA (but not SPP or SAA) produces
new factors of N. An effective two-particle S matrix appears,
which is a pure phase (which depends upon rapidity difference).

• After appropriate color contractions, an excitation can scatter at
most two excitations as N→ ∞. Each particle (antiparticle) can
scatter one or two antiparticles (particles). We’ll list Smirnov’s
axioms in a moment, where this result is the application of Ax-
iom 1. (Watson’s theorem).

• In isovector models, an excitation can scatter at most one other
excitation. Axioms 1. (Watson’s theorem) and 2. (periodicity,
from crossing) imply triviality.

14/25



The master field.
Although Φ is not a free field, there is an associated free field!

Zamolodchikov Algebra of Generalized Creation Operators

A†
P(θ1)a1b1A

†
P(θ2)a2b2 = SPP(θ12)

c2d2;c1d1
a1b1;a2b2

A†
P(θ2)c2d2A

†
P(θ1)c1d1

A†
A(θ1)b1a1A

†
A(θ2)b2a2 = SAA(θ12)

d2c2;d1c1
b1a1;b2a2

A†
A(θ2)d2c2A

†
A(θ1)d1c1

A†
P(θ1)a1b1A

†
A(θ2)b2a2 = SPA(θ12)

d2c2;c1d1
a1b1;b2a2

A†
A(θ2)d2c2A

†
P(θ1)c1d2 ,

P = Particle , A = Antiparticle.

Associativity of the Zamolodchikov algebra implies the Yang-
Baxter equation.
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As N→ ∞, A†’s commute. The master field is the free field:

M(x) =
∫ dθ

4π

[
A†

P(θ)e
ip·x+AA(θ)e−ip·x

]
.

The form factors yield a functional Taylor series of Φ(x) in
terms of M(x).

In principle, we can find the Hamiltonian and the Schrödinger
vacuum functional:

• Invert the functional Taylor series to find AA(θ), AP(θ) in terms
of Φ(x).

• The Hamiltonian is now the sum of s.h.o. Hamiltonians.

• Find AA(θ), AP(θ) in the Schrödinger representation.

• The vacuum satisfies two first-order functional equations, namely
that it is annihilated by AA(θ), AP(θ).
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Form factors of the SU(∞) PCSM.

PRD84 (2011) 105005, PRD86 (2012) 045023.

〈0|Φ(0)b0a0AA(θ1)b1a1 · · ·AA(θM−1)bM−1aM−1AP(θM)aMbM · · ·AP(θ2M−1)a2M−1b2M−1|0〉

=
1

NM−1/2 ∑
σ ,τ∈SM

Fστ(θ1,θ2, . . . ,θ2M−1)
M−1

∏
j=0

δa j aσ( j)+Mδb j bτ( j)+M,

where F = F0+O(1/N),

F0
στ(θ1,θ2, . . . ,θ2M−1) =

(−4π)M−1Kστ

∏
M−1
j=1 [θ j−θσ( j)+M +πi][θ j−θτ( j)+M +πi]

,

and where Kστ = 1, if σ( j) 6= τ( j), for all j and Kστ = 0, otherwise.

This is the minimal choice of FF for SU(N)×SU(N) symmetry.
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Putting everything together:
Combine these form factors and completeness:

1
N
〈0|Φ(x)Φ(0)†|0〉= 1

N ∑
X
〈0|Φ(x)|X〉in in〈X |Φ(0)†|0〉 =⇒

1
N 〈0|Tr Φ(x)Φ(0)†|0〉= Z−1 1

N
〈0|Tr U(x)U(0)†|0〉

=
∫ dθ1

4π
eix·p1 +

1
4π

∞

∑
l=1

∫
dθ1 · · ·dθ2l+1 eix·∑2l+1

j=1 p j
2l

∏
j=1

1
(θ j−θ j+1)2+π2

+ O(N−1) . ET VOILÀ!

Digust, existential nausea, self-loathing: How do we know
minimal FF are the PCSM’s? Convergence? Short distances? We
must test this expression.
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Eucl. t-ordered correlators, PRD90, 125038 (2014),

Set x1 = 0, x0 = iR, R > 0. Then eip j·x = e−mRcoshθ j. For mR� 1,

e−mRcoshθ j ≈
{

1, −L < θ j < L
0, otherwise , L = ln

1
mR

Walls in rapidity space at θ j =±L contain the Feynman-Wilson gas
in the Ising model (Cardy and Mussardo, Yurov and Zamolodchikov
1990). PCSM is a Feynman-Wilson polymer.

L� 1 requires Lévy’s central-limit theorem (thanks to Timothy
Budd!). Introduce u j = θ j/L.

G(mR)=
L

2π

+
L

4π

∞

∑
l=1

∫ 1

−1
du1 · · ·

∫ 1

−1
du2l+1

2l

∏
j=1

1
L[(u j−u j+1)2+(π/L)2]

.
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Extend u,u′ ∈ (−∞,∞). Operators P(a), defined by 〈u′|P(a)|u〉 =
(a/π)[(u′−u)2 +a2]−1. Poisson semigroup: P(a)P(b) = P(a+b).
Specifically, P(a) = exp−a∆1/2, where ∆1/2 =

√
−d2/du2.

Define

〈u′|exp−π

L
H(L)|u〉= 1

L[(u j−u j+1)2+(π/L)2]

on the interval u ∈ (−1,1). Then H(L) = ∆1/2 +O(1/L), where
now ∆1/2 is the self-adjoint extension.
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Short-distance (large-L) behavior.
Discrete spectrum: ∆1/2φn(u) = λnφn(u). For large L:

G(mR) =
L
π

∫ 1

−1
du′
∫ 1

−1
du 〈u′|

[
1− e−2πH(L)/L

]−1
|u〉

=C2L2+C1L+C0+C−1L−1+ · · · ,
where

C2 =
1

8π2 ∑
n

∣∣∣∣
∫ 1

−1
du φn(u)

∣∣∣∣
2

λ
−1
n .

E. Katzav pointed out to me that C2 is the integral over (−1,1) of
the mean first passage time of a Lévy flight, which implies
C2 = 1/(16π) (not yet published).

The correlator obtained from the minimal form factors is finite and
has the correct large-distance and short-distance behavior. Pertur-
bation theory was not used to find this result.

21/25



What’s Next?

1. Much more to do for PCSM.

• Introduce an external field to find the effective action at different
length scales, from our axiomatic approach. This would prove
that the FF are those of PCSM, standing the Clay-type problem
on its head (person who solves it for QCD loses $106). Should
also yield two-loop β -function.

• Temperature > 0. A. Cortés Cubero has studied FF for Tµν and
correlators of Φ.

• The 1/N-expansion is not known beyond the leading order.

• There are integrable supersymmetric generalizations. One way
to include Bose-Fermi interactions.

• Finite volume with twisted boundary conditions and large-N re-
duction.
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What’s Next?

2. Application to gauge theories with d = 2+1, 1+1.

• How I entered this game: used FF of SU(2) PCSM current to
study SU(2) YM2+1 at weak coupling. Coupling is weak, but
second coupling (coefficient of one term in H) is extra weak. 2
couplings helps to find qq̄-potential, spectrum. A. Cortés Cubero
used SU(N) current FF (which he found earlier) to do SU(N) .

• Possible to beat the crossover from 1+ 1-dimensional behavior
to 2+1 dimensional behavior, if certain correlators can be found.

• Axel and I found low-lying spectum of massive YM1+1, semi-
classically. Should be redone with the Bethe-Salpeter eq. Some
temp.> 0 work has been done by Axel.

• No dimensional crossover, if d = (1+ ε) + 1. Earlier attempt
was inconclusive (Dine, Litwin, McLerran 1981).
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What’s Next?

3. Bootstrap theories without integrability, d > 1+1.

• Large-N expansion of unitary S matrices. Use two-particle inter-
mediate state approx. Impose s↔ t crossing. CDD ambiguities
remain, but that is a good thing (classification). Scalar-scalar (π-
π) scattering (Chew, Mandelstam 1960) fails as phenomenology,
but may succeed as field theory.

• Form factors are severely constrained by the form of the S ma-
trix. LSZ reduction formula, dispersion relations (Bogoliubov,
Bremmerman, Ohme, Taylor, Jost, Lehman, Dyson 1950’s).

• In massive theories, form factors (even if we can’t find them all)
yield rapidly-convergent expressions for correlators.

THANK YOU!
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