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Principal Chiral Sigma Model (PCSM) in 1+1 dimensions:

Lagrangian: % = %Tr ,UTo*U, U € SU(N).
0

Currents (no central charge):
FE )y = iTr 1, QU () U(x)T, ji® (x)p = iTr 1,U (x) 19U (x) -
Hamiltonian:

H= [ dx'5o{[jg(0)s)*+ [ ()e]*} = [ dx' 54 Lo (¥))? + [T ()7}
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Why study large-N PCSM?

Answer 1. Interesting in its own right!

e Asympt. free, matrix QFT. NO conf. inv. or supersymmetry.
1/N = 0 sad.-pt. methods fail. Unit S matrix, but not free QFT.

e 2-point function valid at all length scales. It thereby provides
a yardstick that other methods can be compared to (should they
succeed).

e Temperature> 0 (A. Cortés Cubero, PRD91 105025 (2015)).
Answer 2. Applications! A. Cortés Cubero and me.

e Yang-Mills string tensions and mass gaps at WEAK COUPLING
in d=2+1. Not fully Lorentz inv., but no worse than Hamiltonian
strong-coupling exp. in lattice gauge theory.

e Massive Yang-Mills in d=1+1. Dynamical mass reduction (the

actual masses are corrections to twice the PCSM mass - not the
YM mass).
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A quote concerning SU(«) PCSM:

“A quantitative check of these guesses has not yet been done.
There are no doubts, however, that the mystery of the large N limit
for chiral fields will soon be resolved.” - A. M. Polyakov, Gauge
Fields and Strings, Harwood Academic Publishers (1987).

Scaling field is ®(x) ~ Z~'/2 U(x) (equality only in Green’s func-
tions): |

VN

where A indicates an antiparticle and 6 1s its rapidity.

(0] @(0)pq |A,0,d,C)in = OucOpd,

The fields ®, ®' are not unitary, in general (N x N complex matri-
ces).
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Pert. RG: U = 4™ [ = 2 8ap(A) JuA“IHAP,
0

cosh(A-f—1
$ap(A) = [ (zf\-f])c2 )Lﬁ = Oup + 13 fapyfropAPA° + -+

= 8up + ng apsAPA° + -+ (Riemann normal coordinates).

The (time-ordered) correlator in perturbation theory:

Lo (U 0)") LT A ()4 (0)) = exp | 801 (i)
— 11T X ~ecXp——1Ir X = X .
N P=oN PI4ZN N
Btf t' . ag(z)—_ﬁ 4_|_ ﬁ—i
eta function: - = — P g, , b1 =3
2
Anomalous dimension: alnglﬂ)i’ A — ’}/1g(2) +, N = ]Zm:,%

Universal behavior at short distances. As A — o (criticality),
G(|x],A) ~ G(Alx]) ~ CIn"/Pr(Alx]).

But 71 /B, = 2N]2V51 — 2, a8 N — oo,
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The 2-point function, and more results (not discussed here), were
obtained combining the 1/N-expansion with the form-factor boot-
strap. Integrability of the PCSM is used, but perhaps is inessential.

It is striking how the short-distance behavior G(m|x|) — Cln*(m|x|),
emerges from the expression for the Wightman function, with no
use of perturbation theory.
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The S matrix bootstrap in 1+1 dimensions.

In integrable QFT’s, unitarity and factorization (Yang-Baxter equa-
tion) determine the exact S matrix, up to CDD ambiguities. Often
(not always) these ambiguities can be eliminated by:

e Kinematic restrictions, e.g., the sine-law for bound states.
e Other knowledge about the spectrum.

e Comparison with perturbation theory in the coupling constant or
(in the case of 1sovector models) 1/n, n=no. of. components.

Alternatively, use Bethe’s Ansatz, which works for certain systems,
e.g., spin chains. Often tricky to identify the Bethe-Ansatz-solvable
model with a QFT.

The simplest two-particle S matrix is that of the Ising field theory,
L=10,00"¢ —A(¢p*—B), A — 0. Itis S = —1.
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The form-factor bootstrap in 1+1 dimensions.

Early determinations of some form factors for sinh-Gordon, sine-
Gordon, Ising, O(n) sigma/Gross-Neveu,... made from PCT (Wat-
son’s theorem), the reduction formula, Lorentz invariance and cross-
ing. Later, F. Smirnov formulated axioms.

Again, there are ambiguities. Sometimes we can fix these by com-
parison with perturbation theory, 1/n-expansions, etc. Models with
rich spectra of bound states, sine-Gordon, SU(N) chiral Gross-Neveu,
PCSM, are technically harder than others.

FF = (0|®(x)|p1,---,Pm)in = (O|P(x)]64. .., On)in,

(0] (x)2(0)[0) = ) (0]P(x)|X )in in (X|P(0)[0).

X

To find correlators, all form factors are needed. 1st few terms agrees
with Monte-Carlo results.
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6, 6, O,

For Ising FT, in the unmagnetized phase, ® = Z~!/2¢, (0|®|0) = 1
(normalization) and
(0|P(x)|61,...,0u)in ~ H tanh 5 5 O .
j<k
The first few form factors work fairly close to the critical point,
giving approximately (®(x)®(0)) ~ |x|~!/* (Yurov and Zamolod-
chikov, Cardy and Mussardo 1990).
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S Matrix of PCSM
Polyakov+Wiegmann (1983), Abdalla?+Lima Santos (1984), Wieg-
mann (1984)

Spectrum: m, = mssi;((f[/]]vv)), r=1,...,N—1.

Elementary color dipoles r =1 (¢g), bound states r > 1. Elementary
antiparticle: r=N—1. 0 =01, =0, —6,,mcosh0; =E;, msinh6; =
pj. Forr < N, m, = my_, = mr, and binding energy is zero. Sur-
viving bound states are heavy, m, ~ N, except m,_; = m; = m.

(r=1) by (r=1) S-matrix, sans kinematic factors:

$11(6) = SMO2-TIY 5x(6) © Scan(6),

__I'(i8/2n+1)[(—i0/2n—1/N) i
SCGN(G)_F(iG/ZZJrl—l/N)F(fiG/zn) (I— N_%P)‘

Crossing 6 — 71— 0 and fusion, give full S matrix. The residue of
bound-state poles is order 1/N.
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Smirnov’s axioms.

1. Scattering Axiom (Watson’s theorem, implied by PCT):

(o)

91 ] ]+1 m

e

o (S

2. Periodicity Axiom (generalized crossing):

®(0)

0, 6, 6,

)

0,
0410,
s ~
[ ®(0) ]
] ]
6,211 6 6 o,



3. Annihilation Pole Axiom (reduction formula):

i Res [ ] ﬂ ( J

91 92 m 91 92 93 94 m

[ ew )

(@{SD— e <O
6 0, 0 6 O
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4. Lorentz Invariance Axiom (for boost y):

5. Bound-State Pole Axiom:
There are poles on the imaginary axis of rapidity differences 0,
due to bound states.

6. Maximal Analyticity Axiom:

Form factors are holomorphic, except possibly for bound-state
poles or annihilation poles, for rapidity differences 6, in the com-
plex strip 0 < Im 0 < 2m. More guideline than axiom (may fail!).

Comments: Axiom 1. is nontrivial because contractions from Spy
are order N. Axiom 2. 1s valid, despite the breakdown of crossing.
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Why isn’t the large-N limit trivial?

e The S matrix becomes unity in this limit. All the interactions are
powers of 1/N.

e But acting on a form factor with Sp4 (but not Spp or S44) produces
new factors of N. An effective two-particle S matrix appears,
which 1s a pure phase (which depends upon rapidity difference).

e After appropriate color contractions, an excitation can scatter at
most two excitations as N — oo, Each particle (antiparticle) can
scatter one or two antiparticles (particles). We’ll list Smirnov’s
axioms in a moment, where this result is the application of Ax-
iom 1. (Watson’s theorem).

e In 1sovector models, an excitation can scatter at most one other
excitation. Axioms 1. (Watson’s theorem) and 2. (periodicity,
from crossing) imply triviality.

14/25



The master field.

Although @ is not a free field, there is an associated free field!

Zamolodchikov Algebra of Generalized Creation Operators

crdr;crd
A (61) a6 Ap(02)ars, = Spp(012)73 20 Ap(62) sty Ap(61) ey
AT (01)ba, AL (0)pray = San(012)2FN AT (0,) .0, AL (6;)
A\Y1)bja; **4\Y2)bra; AA\Y12)p ay:bray *YA\V2)dycr ¥4\ V1)d)c)
drcr;c1d
Ap(01)arn, A4 (02)bya, = Sea(612)7 et A4 (02) e, Ap(61)cyas
P = Particle, A = Antiparticle.

Associativity of the Zamolodchikov algebra implies the Yang-
Baxter equation.
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As N — o, 2(’s commute. The master field is the free field:

M) = [ [2h(0)er+ 2y (0)e

The form factors yield a functional Taylor series of ®(x) in
terms of M (x).

In principle, we can find the Hamiltonian and the Schrodinger
vacuum functional:

e Invert the functional Taylor series to find 2A4(0), Ap(6) in terms
of d(x).

e The Hamiltonian is now the sum of s.h.o. Hamiltonians.
e Find 204(0), Ap(0) in the Schrodinger representation.

e The vacuum satisfies two first-order functional equations, namely
that it is annihilated by 24(8), Ap(60).
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Form factors of the SU(~) PCSM.
PRD84 (2011) 105005, PRD86 (2012) 045023.

<O‘Cb(0)boaomf\(91)b1a1 o 'mA(GM—l)bM—laM—lglP(GM)aMbM o 'Q[P(OZM—I)azM—lsz—l |O>

1 M—1
NM—1/2 Z FGT(617 627 A 62M—1) H 661] aG(])+M6b] b‘L'(j)-I-M7

O, TESy j=0

where F = F'+ O(1/N),

! 10 — O (j)+m + Ti] |0 — O )4 p + T ’

J=1

ng;(ela 927 ceey GZM—I) —

and where K, = 1, if 6(j) # 7(j), for all j and K, = 0, otherwise.
This is the minimal choice of FF for SU(N)xSU(N) symmetry.
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Putting everything together:

Combine these form factors and completeness:

%m'@(x)q’(o)w = %,ZWICP(X)\XM W (X|©(0)7]0) =

X

L (0[Tr @(x)(0)/[0) = 2~ (01Tr U (1) (0|0

2z+1 21 1

d91 lxm =1 Pj
H (0;—0:1)*+m?

= ax Z/del .d6y, T

+ O(N"'). ET VOILA!

Digust, existential nausea, self-loathing: How do we know
minimal FF are the PCSM’s? Convergence? Short distances? We
must test this expression.
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Eucl. t-ordered correlators, PRD90, 125038 (2014),

Set x! =0, x°=1iR, R > 0. Then ¢'Pi* = ¢ "R0shY; For mR < 1,
e—choshGJ- ~ { (1)7 —L < 9j <L L = lni

otherwise ’ mR

Walls in rapidity space at 6; = =L contain the Feynman-Wilson gas
in the Ising model (Cardy and Mussardo, Yurov and Zamolodchikov
1990). PCSM is a Feynman-Wilson polymer.

L > 1 requires Lévy’s central-limit theorem (thanks to Timothy
Budd!). Introduce u; = 0;/L.

G(mR) = L

2T
L & 1 1 2l 1
+-— /dul“'/ duyy 1 :
sk ) o | A e = e o

19/25



Extend u,u’ € (—oo,00). Operators P(a), defined by (u'|P(a)|u) =
(a/m)[(/ —u)*+a*]"". Poisson semigroup: P(a)P(b) = P(a+b).
Specifically, P(a) = exp —aA'/2, where AY? = \/—d?/du?.

Define

1
L{(uj—uj1)*+ (w/L)’]

on the interval u € (—1,1). Then H(L) = A2 + O(1/L), where
now A!/? is the self-adjoint extension.

(| exp— 7 H (L) u) =
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Short-distance (large-L) behavior.

Discrete spectrum: A'/2¢,(u) = 4,0, (u). For large L:

L 1 1 -1
GmR) == [ du' | du /||l —e 2 HLIL |y
TJ-1 —1

— C2L2—|—C1L—|—C()—|—C_1L_l + -
where

1 2
[ dusiw| 2,
~1

1
CZZW;

E. Katzav pointed out to me that C, is the integral over (—1,1) of

the mean first passage time of a Lévy flight, which implies
C, =1/(16m) (not yet published).

The correlator obtained from the minimal form factors is finite and
has the correct large-distance and short-distance behavior. Pertur-
bation theory was not used to find this result.
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What’s Next?

1. Much more to do for PCSM.

e Introduce an external field to find the effective action at different
length scales, from our axiomatic approach. This would prove
that the FF are those of PCSM, standing the Clay-type problem

on its head (person who solves it for QCD loses $10°). Should
also yield two-loop f-function.

e Temperature > 0. A. Corté€s Cubero has studied FF for 7;,, and
correlators of ®.

e The 1/N-expansion is not known beyond the leading order.

e There are integrable supersymmetric generalizations. One way
to include Bose-Fermi interactions.

e Finite volume with twisted boundary conditions and large-N re-
duction.
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What’s Next?

2. Application to gauge theories withd =2 +1,1+ 1.

e How I entered this game: used FF of SU(2) PCSM current to
study SU(2) YM;,; at weak coupling. Coupling is weak, but
second coupling (coefficient of one term in H) is extra weak. 2

couplings helps to find gg-potential, spectrum. A. Corté€s Cubero
used SU(N) current FF (which he found earlier) to do SU(N) .

e Possible to beat the crossover from 1 + 1-dimensional behavior
to 2+ 1 dimensional behavior, if certain correlators can be found.

e Axel and I found low-lying spectum of massive YM;. |, semi-
classically. Should be redone with the Bethe-Salpeter eq. Some
temp.> 0 work has been done by Axel.

e No dimensional crossover, if d = (1 + &)+ 1. Earlier attempt
was inconclusive (Dine, Litwin, McLerran 1981).
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What’s Next?

3. Bootstrap theories without integrability, d > 1 + 1.

e Large-N expansion of unitary S matrices. Use two-particle inter-
mediate state approx. Impose s <+ ¢ crossing. CDD ambiguities
remain, but that is a good thing (classification). Scalar-scalar (7-
1) scattering (Chew, Mandelstam 1960) fails as phenomenology,
but may succeed as field theory.

e Form factors are severely constrained by the form of the S ma-
trix. LSZ reduction formula, dispersion relations (Bogoliubov,
Bremmerman, Ohme, Taylor, Jost, Lehman, Dyson 1950’s).

e In massive theories, form factors (even if we can’t find them all)
yield rapidly-convergent expressions for correlators.

THANK YOU!
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