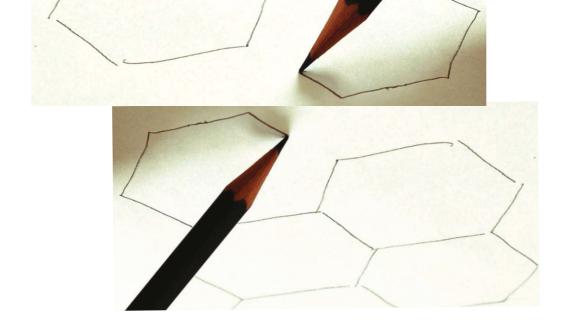
Monte Carlo Simulation of a Quantum Critical Point in Graphene

Simon Hands (Swansea University)

Collaborators:
Wes Armour (Oxford)
Costas Strouthos
(European U. Cyprus)



Holography and Condensed Matter Physics, Perugia, 25th September 2015

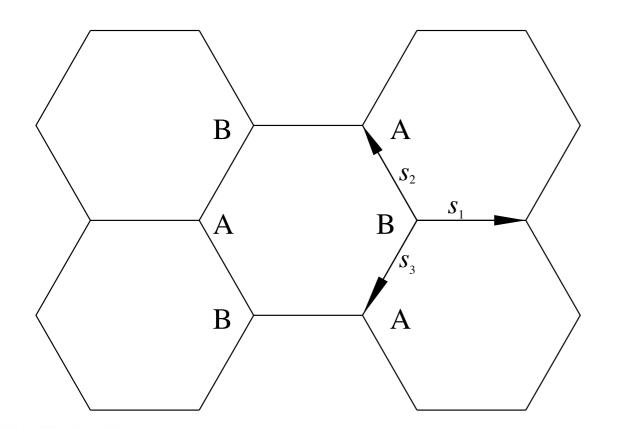
In this talk I will

- introduce a relativistic field theory for lowenergy electron excitations in graphene
- argue that at strong coupling there is a phase transition to a Mott insulator described by a quantum critical point (QCP)
- generalise to bilayer graphene with an inter-layer bias voltage
- present simulation results probing
 degenerate matter with strong interactions

Relativity in Graphene

The electronic properties of graphene were first studied theoretically almost 70 years ago

P.R. Wallace, Phys. Rev. 71 (1947) 622



$$H = -t \sum_{\mathbf{r} \in \mathbf{B}} \sum_{i=1}^{3} b^{\dagger}(\mathbf{r}) a(\mathbf{r} + \mathbf{s}_{i}) + a^{\dagger}(\mathbf{r} + \mathbf{s}_{i}) b(\mathbf{r})$$

"tight -binding" Hamiltonian

describes hopping of electrons in π -orbitals from A to B sublattices and *vice versa*

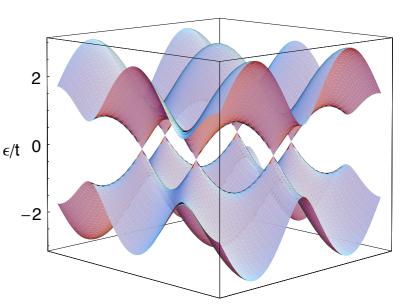
In momentum space

$$H = \sum_{\vec{k}} \left(\Phi(\vec{k}) a^{\dagger}(\vec{k}) b(\vec{k}) + \Phi^{*}(\vec{k}) b^{\dagger}(\vec{k}) a(\vec{k}) \right)$$
 with
$$\Phi(\vec{k}) = -t \left[e^{ik_x l} + 2\cos\left(\frac{\sqrt{3}k_y l}{2}\right) e^{-i\frac{k_x l}{2}} \right]$$

Define states $|\vec{k}_{\pm}\rangle=(\sqrt{2})^{-1}[a^{\dagger}(\vec{k})\pm b^{\dagger}(\vec{k})]|0\rangle$

$$\Rightarrow \langle \vec{k}_{\pm}|H|\vec{k}_{\pm}\rangle = \pm(\Phi(\vec{k}) + \Phi^*(\vec{k})) \equiv \pm E(\vec{k})^{\rm e/t~0}$$

Energy spectrum is symmetric about E=0



Half-filling (neutral or "undoped" graphene) has zero energy at "Dirac points" at corners of first Brillouin Zone:

There are two independent Dirac points in BZ1

$$\Phi(\vec{k}) = 0 \implies \vec{k} = \vec{K}_{\pm} = (0, \pm \frac{4\pi}{3\sqrt{3}l})$$

Taylor expand

@ Dirac point

$$\Phi(\vec{K}_{\pm} + \vec{p}) = \pm v_F[p_y \mp ip_x] + O(p^2)$$

n = 0

with "Fermi velocity"
$$v_F = \frac{3}{2}tl$$

Define modified operators $a_{\pm}(\vec{p}) = a(\vec{K}_{+} + \vec{p})$ etc.

Now combine them into a "4-spinor" $\Psi=(b_+,a_+,a_-,b_-)^{tr}$

$$\Rightarrow H \simeq v_F \sum_{\vec{p}} \Psi^{\dagger}(\vec{p}) \begin{pmatrix} p_y + ip_x \\ p_y - ip_x \end{pmatrix} -p_y - ip_x \end{pmatrix} \Psi(\vec{p})$$

$$= v_F \sum_{\vec{p}} \Psi^{\dagger}(\vec{p}) \vec{\alpha}. \vec{p} \Psi(\vec{p}) \qquad \text{Dirac Hamiltonian}$$

$$\{\alpha_i, \alpha_i\} = 2\delta_{ii}$$

$$\{\alpha_i, \alpha_j\} = 2\delta_{ij}$$

ie. low-energy excitations are relativistic $v_F = \frac{3}{2}tl \approx \frac{1}{300}c$ massless fermions with velocity

$$v_F = \frac{3}{2}tl \approx \frac{1}{300}c$$

For monolayer graphene the number of flavors N_f = 2 (2 C atoms/cell x 2 Dirac points/zone x 2 spins)

Interactions between electrons: an effective field theory

(Son, Khveshchenko,...)

fermions live on two-dimensional "braneworld" interact with photons living in the 3d bulk

$$S = \sum_{a=1}^{N_f} \int dx_0 d^2x (\bar{\psi}_a \gamma_0 \partial_0 \psi_a + v_F \bar{\psi}_a \vec{\gamma}. \vec{\nabla} \psi_a + iV \bar{\psi}_a \gamma_0 \psi_a)$$
 "instantaneous" Coulomb potential since $v_F \ll c$ - unscreened since $\varrho(E=0)=0$ ie. this is not QED₃

Number of "flavors" $N_f = 2$ for monolayer graphene

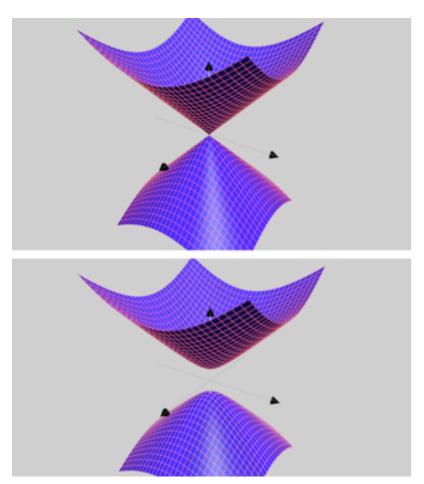
classical 3d Coulomb $\propto r^{-1}$ $V\text{-propagator (large-N_f): } D(p) = \left(\frac{2|\vec{p}|}{e^2} + \frac{N_f}{8} \frac{|\vec{p}|^2}{(p_0^2 + v_F^2|\vec{p}|^2)^{\frac{1}{2}}}\right)^{-1}$

quantum screening due to virtual electron-hole pairs $\propto r^{-1}$

$$\lambda = \frac{e^2 N_f}{16\varepsilon \varepsilon_0 \hbar v_F} \simeq \frac{1.4 N_f}{\varepsilon}$$
 (i) parametrises quantum vs. classical (ii) depends on dielectric properties of substrate

For sufficiently large e^2 , or sufficiently small N_f , the Fock vacuum may be disrupted by a particle-hole "excitonic" condensate $\langle \bar{\psi}\psi \rangle \neq 0$

spontaneously breaks $U(2N_f) \rightarrow U(N_f) \otimes U(N_f)$



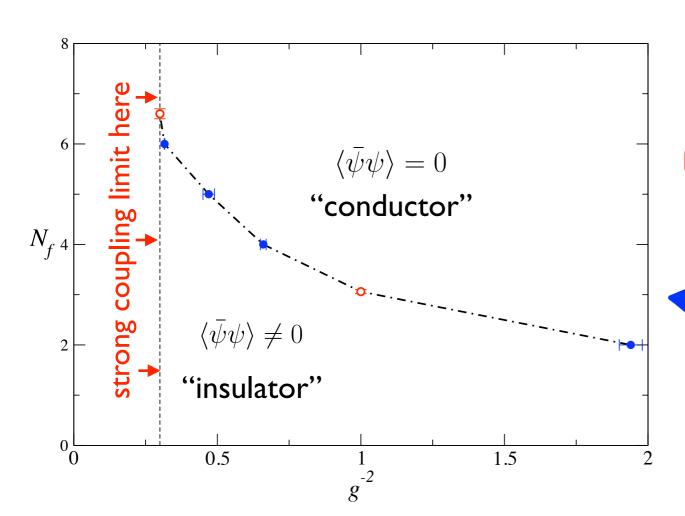
In particle physics this is "chiral symmetry breaking" (xSB) leading to dynamical mass (gap) generation

In condensed matter physics this phase is a Mott insulator

Hypothesis: the χSB transition at $e^2(N_f)$ defines a Quantum Critical Point (QCP) whose universal properties characterise the low-energy excitations of graphene D.T. Son, Phys. Rev. B75 (2007) 235423

QCP characterised by anomalous scaling e.g. $|\langle \bar{\psi} \psi \rangle|_{e^2=e_c^2} \propto m^{\frac{1}{\delta}}$

Physically corresponds to a metal-insulator transition



The proposed phase diagram resembles that of another 2+1d QFT, the Thirring Model

Phase diagram determined by lattice Monte Carlo simulations

Consider "Thirring-like" model for graphene (units $v_F=1$)

$$S = \sum_{a=1}^{N_f} \int dx_0 d^2x \left[\bar{\psi}_a \gamma_\mu \partial_\mu \psi_a + iV \bar{\psi}_a \gamma_0 \psi_a + \frac{1}{2g^2} V^2 \right]$$

local, non-covariant field theory in d=2+1

V-propagator:
$$D(p) = \left(\frac{1}{g^2} + \frac{N_f}{8} \frac{|\vec{p}|^2}{(p_0^2 + v_F^2 |\vec{p}|^2)^{\frac{1}{2}}}\right)^{-1}$$

coincides with Coulombic model as $N_f \to \infty$, or $e^2, g^2 \to \infty$ but long-range interaction is screened for $g^2 < \infty$

Numerical Lattice Approach

$$S_{latt} = \frac{1}{2} \sum_{x\mu i} \bar{\chi}_{x}^{i} \eta_{\mu x} (1 + i\delta_{\mu 0} V_{x}) \chi_{x+\hat{\mu}}^{i} - \bar{\chi}_{x}^{i} \eta_{\mu x} (1 - i\delta_{\mu 0} V_{x-\hat{0}}) \chi_{x-\hat{\mu}}^{i}$$

$$+ m \sum_{xi} \bar{\chi}_{x}^{i} \chi_{x}^{i} + \frac{N}{4g^{2}} \sum_{x} V_{x}^{2}$$

$$i = 1, \dots, N$$

explicit mass gap

 $\chi_x^i, \ \bar{\chi}_x^i$ single spin-component fermion fields defined at sites of a *cubic* lattice

 V_x bosonic auxiliary field defined on link between x and x+0

Relation between coupling g^2 and e^2 , λ not known *a priori*

$$\eta_{\mu x} \equiv (-1)^{x_0 + \dots + x_{\mu - 1}}$$

Kawamoto-Smit phases ensure covariant continuum limit for g²=0

Chiral symmetry: $U(N) \otimes U(N) \rightarrow U(N)$ (if $m \neq 0$)

Numerical Lattice Approach

$$S_{latt} = \frac{1}{2} \sum_{x\mu i} \bar{\chi}_{x}^{i} \eta_{\mu x} (1 + i\delta_{\mu 0} V_{x}) \chi_{x+\hat{\mu}}^{i} - \bar{\chi}_{x}^{i} \eta_{\mu x} (1 - i\delta_{\mu 0} V_{x-\hat{0}}) \chi_{x-\hat{\mu}}^{i}$$

$$+ m \sum_{xi} \bar{\chi}_{x}^{i} \chi_{x}^{i} + \frac{N}{4g^{2}} \sum_{x} V_{x}^{2}$$

$$i = 1, \dots, N$$

explicit mass gap

 $\chi_x^i, \ \bar{\chi}_x^i$ single spin-component fermion fields defined at sites of a *cubic* lattice

 V_x bosonic auxiliary field defined on link between x and x+0

Relation between coupling g^2 and e^2 , λ not known *a priori*

$$\eta_{\mu x} \equiv (-1)^{x_0 + \dots + x_{\mu - 1}}$$

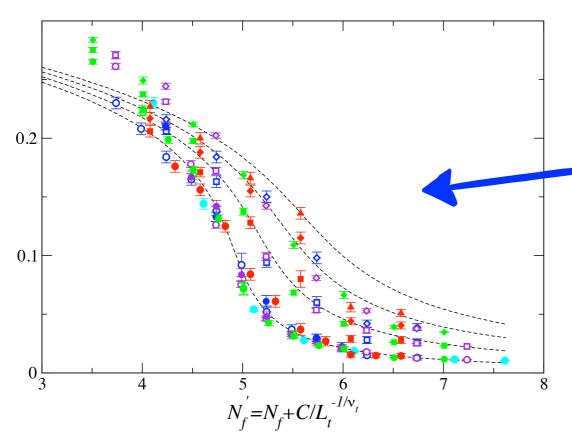
Kawamoto-Smit phases ensure covariant continuum limit for g²=0

Chiral symmetry: $U(N) \otimes U(N) \rightarrow U(N)$ (if $m \neq 0$)

In weak coupling continuum limit, can show $U(2N_f)$ and Lorentz symmetries are recovered, with $N_f = 2N$ What happens at a QCP is anyone's guess!

EoS results

SJH & C.G. Strouthos, Phys. Rev. B**78**(2008) 165423 W. Armour, SJH & C.G. Strouthos, Phys. Rev. B**81**(2010) 125105



Strong coupling limit

$$N_{fc} = 4.8(2) > 2$$

$$\delta(N_{fc}) = 5.5(3)$$

⇒ graphene is an insulator for sufficiently strong coupling

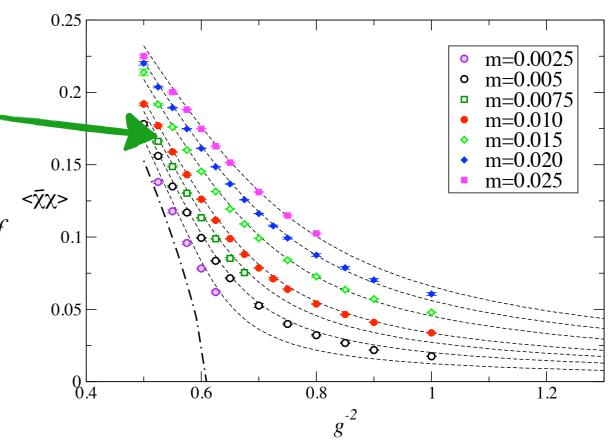
 \Rightarrow QCP potentially relevant for N_f = 2

$$g_c^{-2} = 0.609(2)$$

$$\delta(N_f=2)$$
 = 2.66(3) so δ depends on N_f

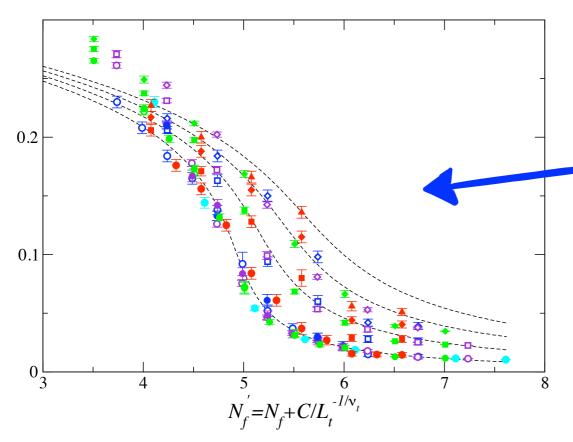
Cf braneworld simulation

Drut & Lähde Phys. Rev. B79(2009) 241405(R)



EoS results

SJH & C.G. Strouthos, Phys. Rev. B**78**(2008) 165423 W. Armour, SJH & C.G. Strouthos, Phys. Rev. B**81**(2010) 125105



Strong coupling limit

$$N_{fc} = 4.8(2) > 2$$

$$\delta(N_{fc}) = 5.5(3)$$

⇒ graphene is an insulator for sufficiently strong coupling

 \Rightarrow QCP potentially relevant for N_f = 2

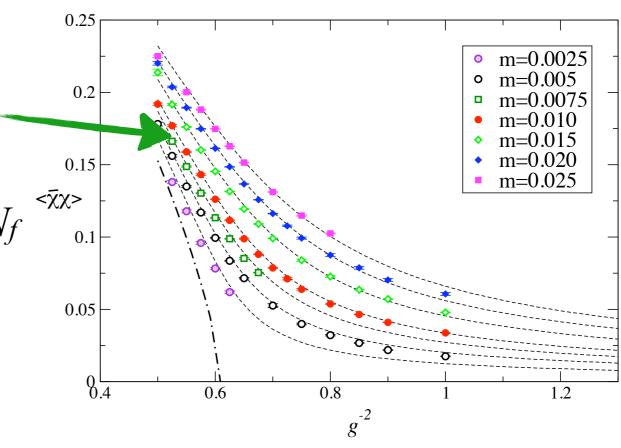
$$g_c^{-2} = 0.609(2)$$

$$\delta(N_f=2)$$
 = 2.66(3) so δ depends on N_f

Cf braneworld simulation

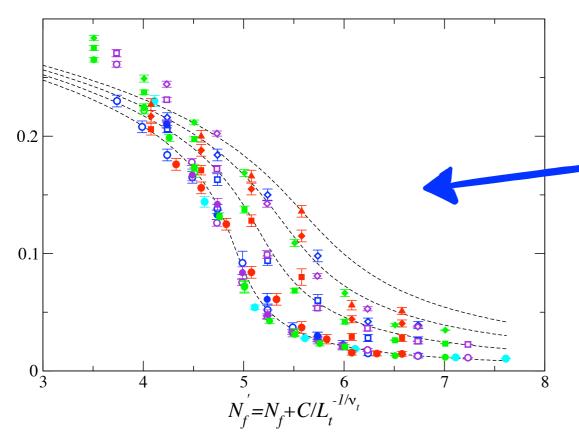
Drut & Lähde Phys. Rev. B79(2009) 241405(R)

Cf. honeycomb lattice with "realistic" interaction:



EoS results

SJH & C.G. Strouthos, Phys. Rev. B**78**(2008) 165423 W. Armour, SJH & C.G. Strouthos, Phys. Rev. B**81**(2010) 125105



Strong coupling limit

$$N_{fc} = 4.8(2) > 2$$

$$\delta(N_{fc}) = 5.5(3)$$

⇒ graphene is an insulator for sufficiently strong coupling

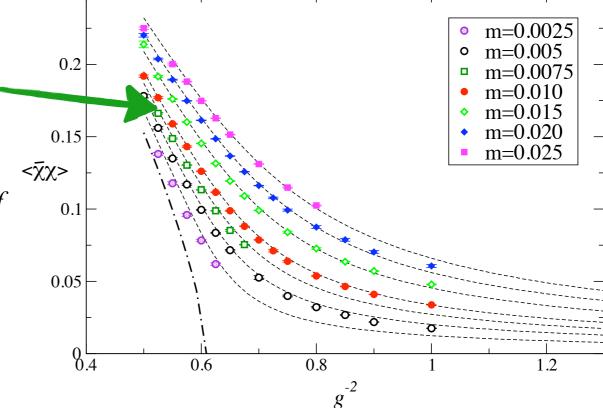
 \Rightarrow QCP potentially relevant for N_f = 2

 $g_c^{-2} = 0.609(2)$

 $\delta(N_f=2)$ = 2.66(3) so δ depends on N_f

Cf braneworld simulation

Drut & Lähde Phys. Rev. B79(2009) 241405(R)



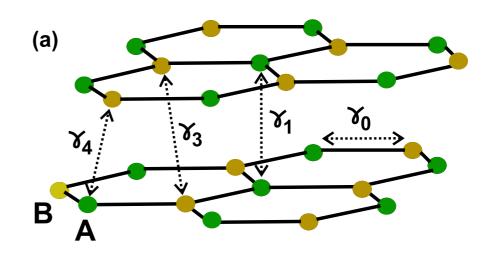
Cf. honeycomb lattice

with "realistic" interaction: suspended graphene (ε =1) lies in metallic phase

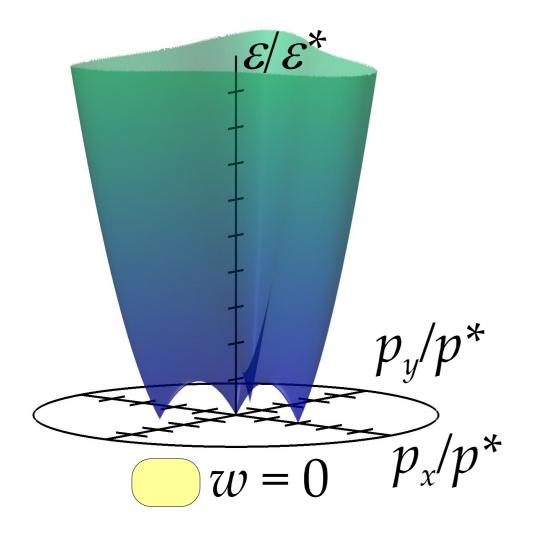
Ulybyshev, Buividovich, Katsnelson & Polikarpov Phys. Rev. Lett. 111(2013) 056801)

Bilayer graphene

distortion of band and doubles number of Dirac points when the contract points are the contract of the contra



 $N_f = 4$ EFT description plausible for $ka \leq \gamma_1 \gamma_3/\gamma_0^2$



Introduction of a bias voltage μ between the layers induces electrons on one, holes on the other.

Inter-layer exciton condensation driven by enhanced density of (e,h) states at Fermi surface leads to gap formation?

Bilayer effective theory (N=2 staggered flavors)

$$\mathcal{L} = (\bar{\psi}, \bar{\phi}) \begin{pmatrix} D[A; \mu] + m & ij \\ -ij & D[A; -\mu] - m \end{pmatrix} \begin{pmatrix} \psi \\ \phi \end{pmatrix} + \frac{1}{2g^2} A^2$$

$$\equiv \bar{\Psi} \mathcal{M} \Psi. + \frac{1}{2g^2} A^2$$

Bias voltage μ couples to layer fields ψ , ϕ with opposite sign (Cf. isospin chemical potential in QCD)

Intra-layer $(\psi\psi)$ and inter-layer $(\psi\phi)$ interactions have same strength

"Gap parameters" m, j are IR regulators

$$D^{\dagger}[A;\mu] = -D[A;-\mu]$$
. inherited from gauge theory

$$\det \mathcal{M} = \det[(D+m)^{\dagger}(D+m)+j^2] > 0$$

No sign problem!

In practice no problem with setting m=0

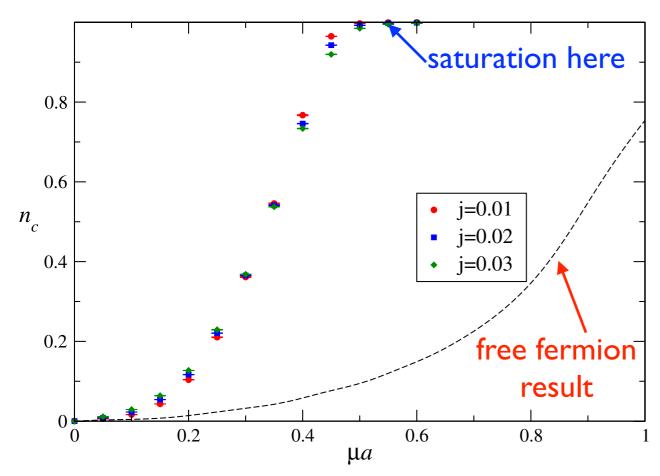
carrier density

$$n_c \equiv \frac{\partial \ln Z}{\partial \mu} = \langle \bar{\psi} D_0 \psi \rangle - \langle \bar{\phi} D_0 \phi \rangle.$$

• exciton condensate (interlayer)
$$\langle \Psi \Psi \rangle \equiv \frac{\partial \ln Z}{\partial j} = i \langle \bar{\psi} \phi - \bar{\phi} \psi \rangle$$

• chiral condensate (intralayer)
$$\langle \bar{\Psi}\Psi \rangle \equiv \frac{\partial \ln Z}{\partial m} = \langle \bar{\psi}\,\psi \rangle - \langle \bar{\phi}\,\phi \rangle$$

Carrier Density



Fit small- μ data: $n_c(j=0) \propto \mu^{3.32(1)}$

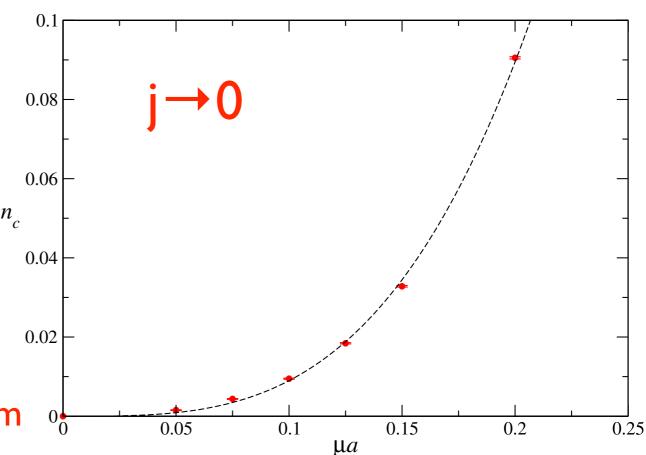
Cf. free-field $n_c^{\text{free}} \propto \mu^d \propto \mu^2$

Observe premature saturation at $\mu a \approx 0.5$ (other lattice models typically saturate at $\mu a \approx 1$)

$$\Rightarrow \mu a_t \approx E_F a_t < k_F a_s$$

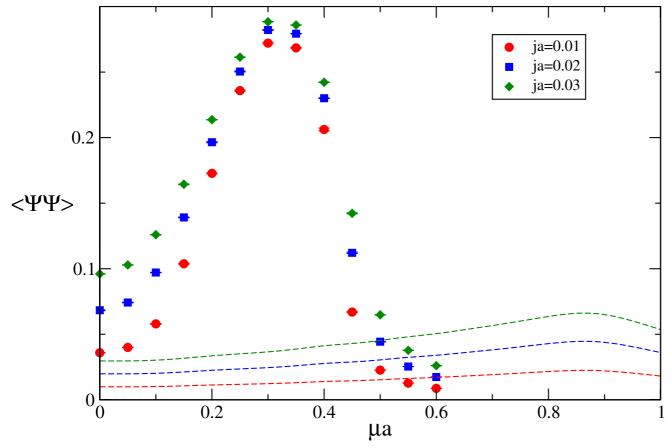
$$n_c^{free}(\mu) << n_c^{free}(k_F) \approx n_c(\mu)$$

no discernable onset $\mu_o > 0$



 $NB n_c \propto k_F^2$ Luttinger's theorem

Exciton Condensate

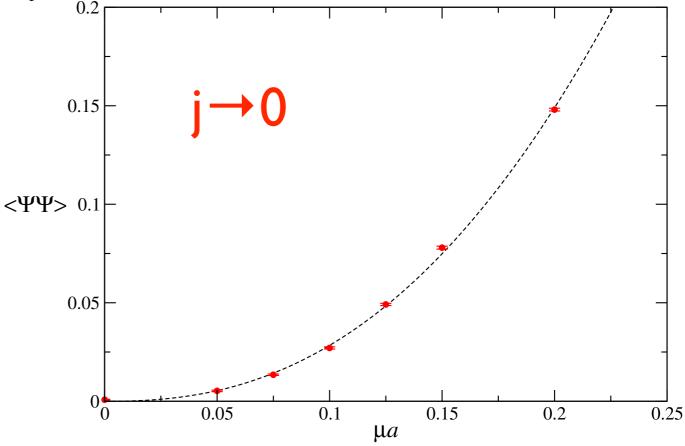


rapid rise with μ to exceed free-field value, peak at $\mu a{\approx}0.3,$ then fall to zero in saturation region

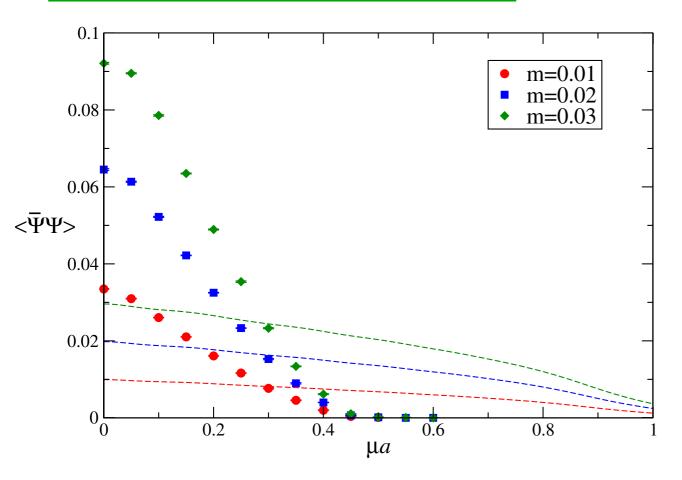
Exciton condensation, with no discernable onset $\mu_0 > 0$

Fit small- μ data: $\langle \Psi \Psi (j=0) \rangle_{\alpha} \mu^{2.39(2)}$

Cf. weak BCS pairing $\langle \Psi\Psi\rangle_{\approx}\Delta\mu^{d\text{-}1}\!\propto\!\mu~?$



Chiral Condensate



exceeds free-field value for small μ , indicative of nearby QCP, then rapidly falls to zero as μ increases.

Interlayer pairing suppressed as E_F grows

$$|\langle \overline{\Psi} \Psi \rangle| \approx \frac{1}{3} |\langle \Psi \Psi \rangle|_{peak}$$

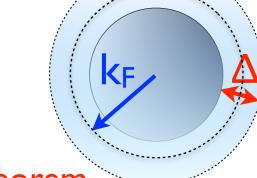
ie. particle-hole pairing is promoted by the large Fermi surface induced by $\mu \neq 0$

the two condensates compete: $\langle \overline{\Psi}\Psi \rangle < \langle \overline{\Psi}\Psi \rangle_{free}$ when $\langle \Psi\Psi \rangle$ peaks

For a BCS-style condensation - ie. pairing at Fermi surface leading to gap generation $\Delta > 0$

 $<\Psi\Psi>/n$

expect
$$\langle \Psi \Psi \rangle \propto \Delta k_F^{d-1} \propto \Delta n_c^{\frac{d-1}{d}}$$



where last step follows from Luttinger's theorem

Thus
$$\Delta(\mu) \propto \langle \Psi \Psi \rangle / \sqrt{n_c} \propto \mu^{1.44}$$
?

Find near-linear dependence $\Delta\!\propto\!\mu$ at small $\mu\!\!:\!$ expected for conformal behaviour near QCP

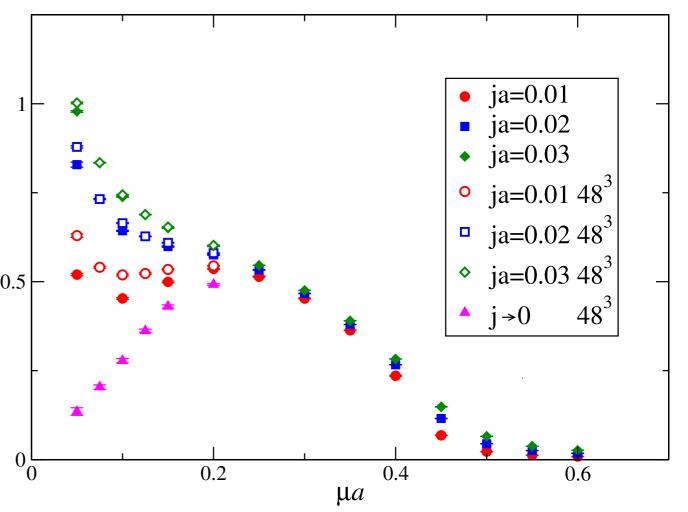
Cf. NJL model: $\Delta = O(\Lambda_{UV})$

(SJH & D.N. Walters PRD69 (2004) 076011)

QC₂D: $\Delta = O(\Lambda_{QCD})$

(S. Cotter et al PRD87 (2013) 034507)

in both cases (roughly) μ -independent

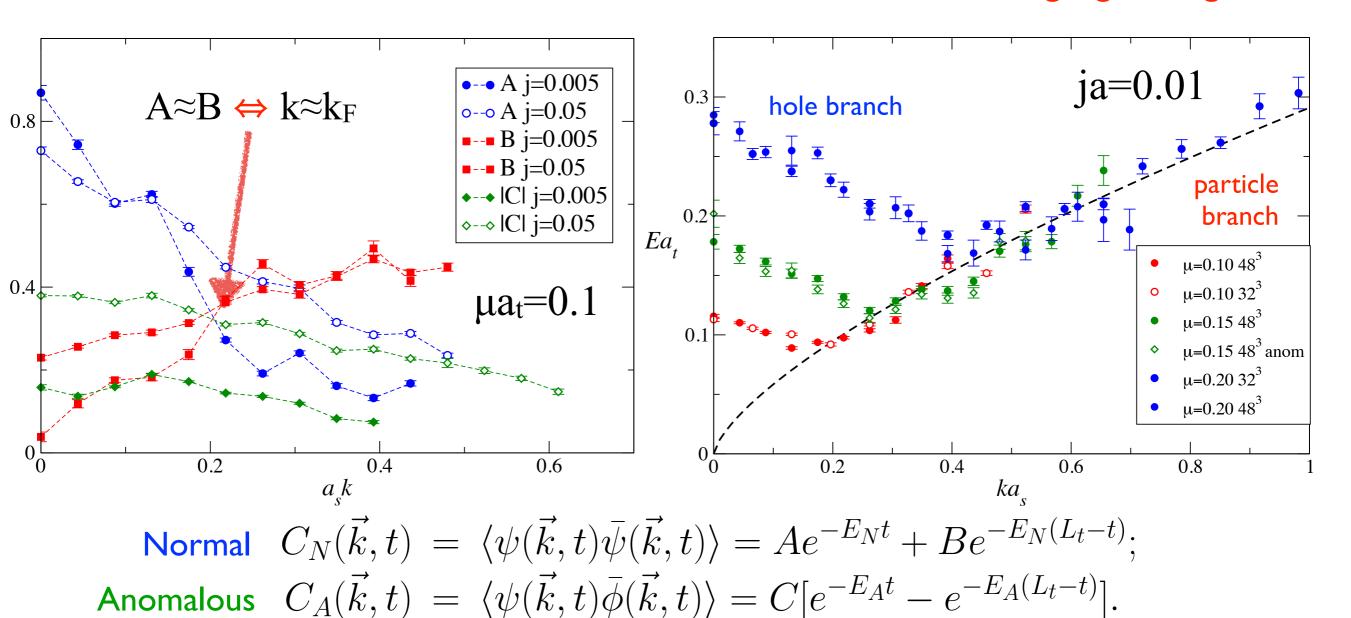


Quasiparticle Dispersion

W.Armour, SJH & C.G. Strouthos arXiv: 1509.03401

 $<\Psi(k)\overline{\Psi}(k)>\sim e^{-E(k)t}$

partially twisted spatial b.c. improve momentum resolution - no gauge fixing needed!



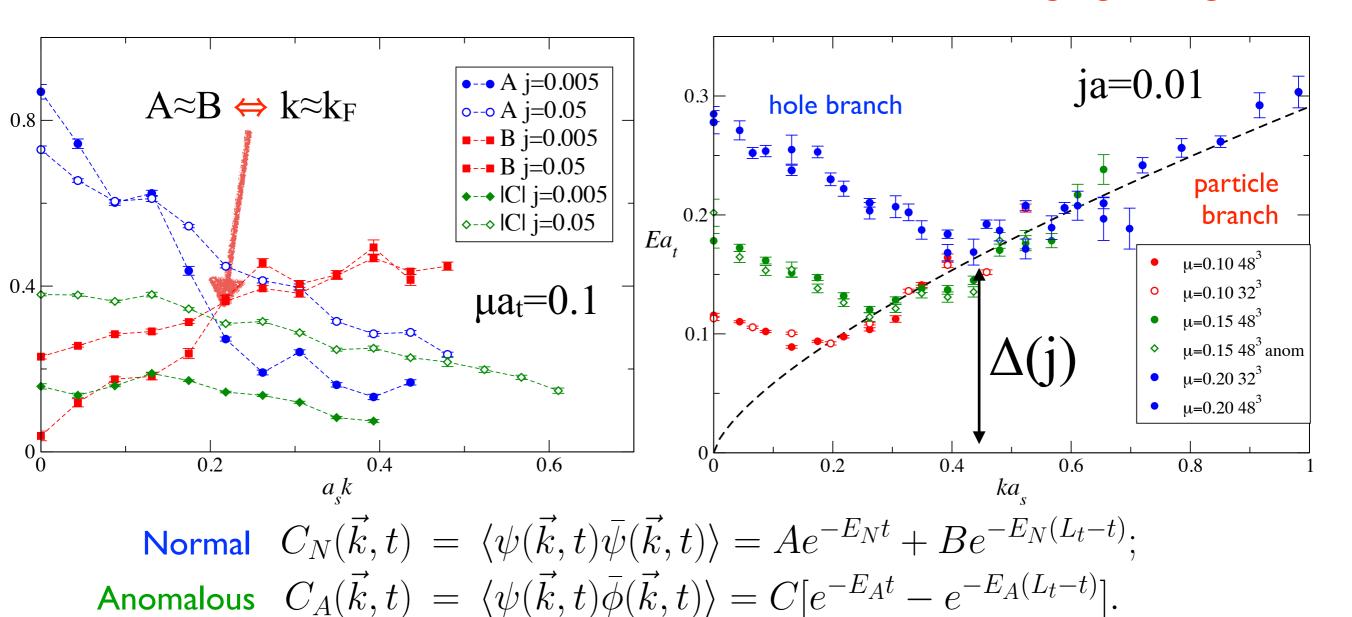
Amplitudes A, B, C show crossover from holes to particles

Dispersions E(k) show k_F varying with μ with $k_F a_s > \mu a_t$

W.Armour, SJH & C.G. Strouthos arXiv: 1509.03401

 $<\Psi(k)\overline{\Psi}(k)>\sim e^{-E(k)t}$

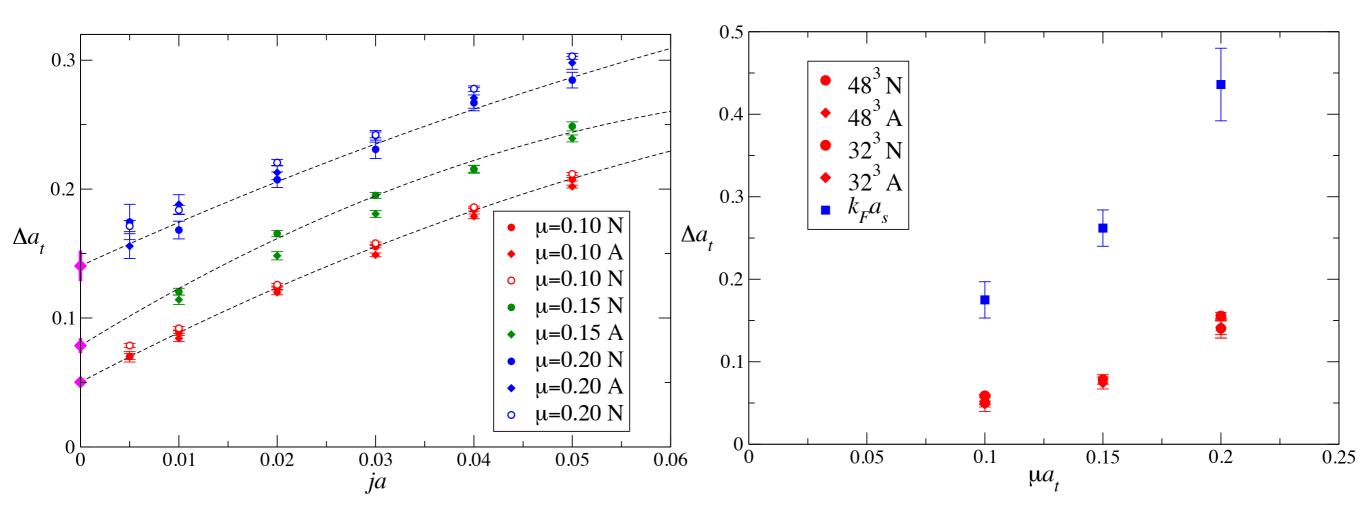
partially twisted spatial b.c. improve momentum resolution - no gauge fixing needed!



Amplitudes A, B, C show crossover from holes to particles

Dispersions E(k) show k_F varying with μ with $k_F a_s > \mu a_t$

And the gap Δ ?....



Again, consistent with a gapped Fermi surface with $\Delta/\mu=O(1)$ Cf. $\Delta/\mu\sim10^{-7}$ found in diagrammatic approach

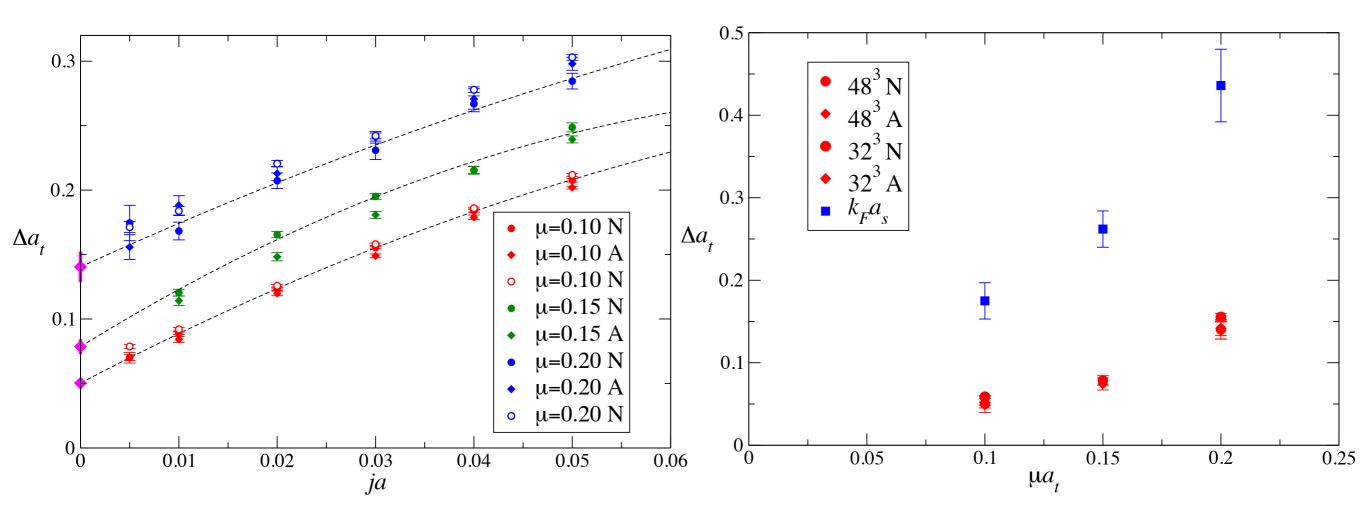
Kharitonov & Efetov Semicond. Sci. Technol. 25 034004 (2010)

 Δ/μ ~O(1) found if screening treated self-consistently

Sodemann, Pesin & MacDonald PRB 85 195136 (2012)

Both Δ and k_F scale superlinearly with μ

And the gap Δ ?....



Again, consistent with a gapped Fermi surface with $\Delta/\mu=O(1)$ Cf. $\Delta/\mu\sim10^{-7}$ found in diagrammatic approach

Kharitonov & Efetov Semicond. Sci. Technol. 25 034004 (2010)

 Δ/μ ~O(1) found if screening treated self-consistently

Sodemann, Pesin & MacDonald PRB 85 195136 (2012)

Both Δ and k_F scale superlinearly with μ consistent with $\Delta(\mu) \propto \mu^{1.44}$?

Summary

- A new, interesting member of the small class of models permitting MC study with $\mu\neq 0$
- Behaviour very different from previous (QC₂D, NJL)
 ⇒ residual interactions at Fermi surface are strong

Densities and condensates scale anomalously with μ Quasiparticle dispersion E(k) exposes Fermi surface disrupted by pair condensation

- Strongly-interacting QCP $\Leftrightarrow \Delta = \Delta(\mu), \Delta/\mu = O(1)$
- $\Delta \propto \mu^{\sigma}$ with $\sigma > 1$?
- Next move: domain wall lattice fermions
 to better reproduce global symmetries of 2+1d

$$U(8) \underset{\mu \neq 0}{\longrightarrow} U(4) \otimes U(4) \underset{j \neq 0}{\longrightarrow} U(4)$$