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Monopole operators

Magnetic monopole operator M(xm) [Borokhov-Kapustin-Wu’02]

In a U(1) (2 + 1)d gauge theory: It is a localized defect that inserts a magnetic flux at a certain

point xm

in a path integral formalism: In a (2 + 1)d field theory with a global U(1): Apply an external

gauge field aµ coupled to the current jµ

SQFT → SQFT −
∫

d
3
x aµ j

µ

and promote aµ to be dynamical with boundary condition

df = qmδ
(3)

(x − xm)

where f = da, then

〈M(xm)〉 =
1

Z

∫
df=qmδ

(3)(x−xm)

[Da][Dϕ]e
SQFT−

∫
d3 x aµ jµ



Monopole operators

In a (2 + 1)d field theory global topological U(1) conserved current

j̃µ ∼ εµνλfµν

BUT now:

〈∂µ̃ jµ(x)M(xm)〉 ∼ qmδ
(3)(x − xm)〈M(xm)〉+ . . . .

“particle” with magnetic charge qm with respect to j̃µ

Vortex-creating operator [Borokhov-Kapustin-Wu’02]: insertion at xm of a vortex charge qm
(magnetic flux through S2 centred at xm)

Topological disorder operator



Monopole operators: why?

non-local and non-perturbative (Dirac quantization): intrinsically interesting objects

from a condensed matter point of view: order parameter in quantum phase transition

- continuous quantum phase transition from an antiferromagnet to a valence bond solid phase:

described by a CPN model with a condensation of monopoles at the critical point [Read’89][Read’90]

[Murthy-Sachdev’90]

- phase transition between compressible phases (superfluid and solid phase) in a doped (2 + 1)d
conformal field theory [Sachdev ’12]



Goal and strategy

Idea:

monopole operators relevant in a holographic approach to study quantum matter phases

[Faulkner-Iqbal’12][Sachdev’12] [Iqbal’14][Filev’14]

Goal:

- How does the system react to an injection of magnetic flux?

- Different matter phases are characterized by different answers to this question

- Relevant observables: monopole two-point functions

Strategy: Computation of monopole correlators in AdS/CFT



Bulk monopoles at large N: general idea

The idea is [Sachdev’12] [Witten’03]:

On the bulk a particle electrically charged under A is dual to a (heavy) operator which

carries a charge under j (the dual boundary current)

On the bulk a particle magnetically charged under A is dual to a (heavy) operator which

carries a magnetic charge under j (picture by [Iqbal’14])

This is what we define a bulk magnetic monopole

5

non-perturbative object [22], as the magnitude of its field
qm satisfies a Dirac quantization condition. We cannot
justify dropping the terms that are higher order in a
in (2.14). For example, applied to the free relativistic
fermion this technique results in a power-law correlation
as in (2.5), but with a � ⇠ q2m as befitting a classical
interaction energy. However this is wrong: the actual de-
pendence of � on the discrete parameter qm, computed
using CFT techniques in [1, 15], is not quadratic.

Importantly, it has however been argued nonperturba-
tively that the monopole dimension is formally “infinite”
with respect to the scaling symmetry that scales single-
particle modes towards the Fermi surface [23]. This
means that the monopole operator is not relevant and
suggests that the correlation function should fall o↵ faster
than a power-law, but we do not know of a controlled
field-theoretical method to compute the actual scaling
function.

The nonperturbative nature of the monopole operator
will be particularly clear in the holographic computations
that follow, and we will revisit this issue in the conclu-
sion.

III. HOLOGRAPHIC FLAVOR AND
MONOPOLE OPERATORS

Having reviewed expectations from field theory, we
now turn to holography. Given a (2 + 1) dimensional
field theory with a gravitational dual, we seek to un-
derstand the bulk object that is dual to the monopole
operator M(x). Soon we will specialize to a particular
field theory, but first we make some general statements
that should apply to any holographic model.

The conserved current jµ(x) is dual to a gauge field
AM (r, x) in the (3+1) dimensional bulk. Now a local
operator on the boundary is generally dual to a propa-
gating field in the bulk. If this field has a large mass –
which will turn out to be the case for the monopole oper-
ator – then the physics is well described by the individual
quanta of the field, i.e. by particles. It is well understood
that if such a bulk particle is electrically charged under
AM then it is dual to an operator that carries charge
under jµ. It should then seem very natural that a parti-
cle that is magnetically charged under AM – i.e. a bulk

magnetic monopole – is dual to the monopole operator
M(x), which carries “magnetic charge” with respect to
jµ in the manner defined above. Some details related to
this identification can be found in [7], including the holo-
graphic computation of the three-point function between
j and the monopole operators.

We present a quick way to understand this. Con-
sider the definition (1.3) of the monopole operator. In
AdS/CFT, the external gauge field source aµ is iden-
tified with the boundary value of the bulk gauge field
Aµ(r ! 1, x) = aµ(x). In the large-N limit, the path
integral over aµ reduces to the tree-level demand that
the bulk action be stationary with respect to variations

of the boundary value of Aµ, subject to the boundary
condition (1.3).

Now imagine a small S2 at the boundary surrounding
the monopole insertion point xm, as shown in Figure 3
We have

Z

S2

dA(r ! 1) =

Z

S2

da = qm (3.1)

As a is a dynamical gauge field, this boundary condition
indicates the presence of a defect sourcing the gauge field
at xm on the boundary. This source can only be supplied
by the bulk magnetic monopole, whose worldline must
now intersect the boundary at xm. This is precisely the
statement that the bulk monopole is the dual of the local
operator defined by (1.3). Note that if we we now pull
the S2 o↵ the boundary and move it into the bulk, the
nonzero flux will persist whenever the S2 surrounds a
one-dimensional curve C – the worldline of the monopole.

xm

FIG. 3. Intersection of bulk monopole worldline with bound-
ary is insertion of field theory monopole operator at xm. Note
any S

2 surrounding the bulk worldline will register a nonzero
magnetic flux.

These considerations apply to any reasonably consis-
tent example of holography, in particular to bottom-up
models. However, we will see that some of the physics
that we are interested in will require extra information
(i.e. the completion provided by string theory) for a con-
trolled description.

A. D3D5 intersection

To that end we now specialize to a particular field the-
ory, the well-studied D3D5 intersection. Here we will take
Nc D3 branes and a single D5 brane intersecting along
(2 + 1) dimensions. The field theory consists of N = 4
Super Yang-Mills with gauge group SU(Nc) in (3+1) di-
mensions from the D3 branes. The D5 brane contributes
matter charged in the fundamental under this SU(Nc)
but living on a (2 + 1) dimensional defect [24–26]2. We
will focus only on the dynamics that is localized on this

2
See (e.g.) Chapter 8 of [27] for an introductory review of funda-

mental flavor in AdS-CFT via probe branes.

We will work with a top-down construction employed by Iqbal [Iqbal’14]



Bulk monopoles: a top-down model I

Background: D3/ probe-D5

- N � 1 D3-branes: AdS5 × S5 background

- D5-brane: probe and intersecting the D3’s along (2 + 1)-d (embedding: AdS4 × S2)

t x y x⊥ u ψ θ φ θ̃ φ̃

N D3 (background) × × × ×
probe D5 (background) × × × × × ×

Field theory content: N = 4 SYM in (3 + 1)-d with fundamental matter charged under

SU(N) living in the (2 + 1)-d defect with a U(1)B baryon number current

[DeWolfe-Freedman-Ooguri’01][Erdmenger-Guralnik-Kirsch’02][Karch-Katz’02]

We focus on (2 + 1)-d defect field theory and U(1)B baryon number current



Bulk monopoles: a top-down model II

add an extra probe D3: wrapping an S2 ⊂ S5 and its boundary (s, θ, φ) ends on D5-brane

D3 describes a world-line C in AdS4

t x y x⊥ z ψ θ φ θ̃ φ̃
N D3s × × × ×

probe D5 × × × × × ×
probe D3 × × × ×

D(p− 2)- branes ending on Dp-branes appear as magnetic charges in the Dp

world-volume [Strominger’99]

Bulk monopole is a wrapped D3 ending on D5:

magnetically charged point-particle in AdS4 [Iqbal’14]



From bulk to boundary monopoles: a top-down model III

When one end of the D3 world-line reaches the boundary at some point xm, this

corresponds to an insertion of a magnetic charge at a point xm: boundary monopole

operator

In the large N limit, boundary monopole correlators computed by the D3 action [Iqbal’14]:

〈M(∆x)M†(0)〉 ∼ e−SD3[∆x]

where ∆x is separation among the two D3 ends.

This is the object we are going to compute at finite T



How do we proceed?

Our background is thermal AdS5 × S5

Insert the probe D5: We solve for the various D5 embedding

Insert the probe D3 (bulk monopole): Compute the action with the condition that its

boundary ends on the D5.

Repeat all the steps for various embeddings and with/without charge on the D5

world-volume.



Monopole correlators

Action for the D3 monopole: [Iqbal’14]

SD3 = T3

∫
D3

C4 − T3

∫
D3

√
− det (γ3 + 2πα′F3) + qm

∫
C

Ã .

Third term: magnetic coupling between the D3 brane and the gauge field living on the D5

The gauge invariance of the D3 and D5 action with respect to the gauge transformation

of C4 requires a 3-form Lagrange multiplier at the boundary of the D3

qm

∫
∂D3

K3 , K3 ∼ Ã ∧ V2

with V2 the unit volume on S2 and qm = T3
2π α′ T5

= 2π .

Ã is the 4d magnetic dual of A, the D5 world-volume gauge field

(dÃ)LM ∼
√

− det (γ5 + 2πα′ F5)
((
γ5 + 2πα′ F5

)−1
)NP

εLMNP ,

At leading order: dÃ ∼ ?4F and is dual to the topological boundary current



Warming up: T = 0 conformal phase I [Iqbal’14]

Background metric at T = 0

ds2 =
u2

R2
(−dt2 + dx2 + dy2 + dx2⊥) +

R2

u2

(
du2 + u2 dΩ2

5

)
,

dΩ2
5 = dψ2 + sin2 ψ dΩ2

2 + cos2 ψ dΩ̃2
2

where R is the AdS radius.

D5 embedding: AdS4 × S2 specified by

ψ =
π

2
, x⊥ = 0

monopole D3: boundary wraps S2 times a world-line in AdS4 and then it extends from

ψ = 0 to ψ = π
2

picture by [Iqbal’14]
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defect. At zero coupling the field-theory action for the
degrees of freedom on the defect is

Sdefect =

Z
d3x

�|Dµq|2 � i �µDµ 
�

(3.2)

Here the q’s are complex scalars that transforms in the
fundamental under a global symmetry SU(2)H , while
the Dirac fermions  transform in the fundamental of
a di↵erent global symmetry SU(2)V . Both the scalars
and fermions are in the fundamental of the gauge group
SU(Nc). The U(1) current that we will study is the
baryon number current U(1)B , which acts as a phase ro-
tation on both  and q. This system has been very well-
studied as an example of top-down holography in (2 + 1)
dimensions and we briefly review it here.

At strong coupling the D3 branes coalesce into the
usual AdS5⇥S5, with the standard relations for the AdS
radius R and the string coupling in terms of gauge theory
quantities:

gs =
g2Y M

4⇡

R

ls
= (g2Y MNc)

1
4 . (3.3)

The single D5 brane can be treated as a probe brane: ne-
glecting the backreaction of the probe is dual to neglect-
ing the e↵ect of the O(Nc) fundamental matter degrees
of freedom on the O(N2

c ) gluons.
To determine the possible phases we minimize the DBI

action of the D5 brane

S5 = �T5

Z
d6�

p
�det (�5 + 2⇡↵0F ), (3.4)

where �5 is the induced metric on the D5 brane worldvol-
ume, and F = dA is the field strength of the bulk gauge
field A that is dual to the U(1)B current j. The tension
of a Dp brane is

Tp =
1

(2⇡)pgsl
p+1
s

. (3.5)

We take the metric of a unit S5 to be

ds2S5 = d 2 + sin2  
�
d✓2 + sin2 ✓d�2

�

+ cos2  
⇣
d✓̃2 + sin2 ✓̃d�̃2

⌘
, (3.6)

and we write the metric of AdS5 as

ds2AdS5
=

R2

z2
��dt2 + dx2 + dy2 + dx2

? + dz2
�
, (3.7)

There is a solution where the D5 brane is extended in the
✓ and � directions and so wraps the first S2 ⇢ S5, sitting
at the point  = ⇡

2 . SU(2)H acts as SO(3) rotations

on (✓,�), and SU(2)V acts as SO(3) rotations on (✓̃, �̃).
The D5 brane also sits at x? = 0; the remaining four
dimensions (t, x, y, z) form an AdS4 slice inside the bulk
AdS5:

ds2AdS4
=

R2

z2
��dt2 + dx2 + dy2 + dz2

�
. (3.8)

This AdS4 indicates that the dual (2 + 1) dimensional
defect theory is conformally invariant.

There are other possibilities for the IR dynamics: in-
deed we may realize many of the possibilities discussed
in Section II above, but for the remainder of this section
we will study the conformal phase.

B. Monopole operator

We now need to identify the bulk object that is dual to
the monopole operator M(x). Following the discussion
above, this should be a particle (i.e. a 1-dimensional
object in spacetime) in AdS4 and is magnetically charged
under the worldvolume gauge field A.

The correct object is a wrapped D3 brane that ends

on the D5 brane. The boundary of the D3 brane is a
(2+1) dimensional manifold: as the D3 ends on the D5,
this boundary must lie on the D5 worldvolume. Take this
boundary to wrap the compact S2: as the S2 shrinks to
zero size inside the S5, the D3 brane can now fill in a half
S3, as shown in Figure 4. In the coordinates of (3.6) the
D3 brane is extended in the  direction from  = 0 to
 = ⇡

2 where it ends on the D5 brane. The remaining one
dimension of the D3 brane becomes a worldline C on the
AdS4. This D3 brane configuration and its identification
as a magnetic monopole has recently been studied in [11].

 

⇡

2

0

FIG. 4. D3 brane ends on D5 brane worldvolume (at  = ⇡
2 ),

filling in half-S3 and extending from  = 0 to  = ⇡
2 .

Branes ending on branes appear as magnetic sources to
worldvolume fields when the di↵erence in dimension is 2
[28]. In Appendix A we work out the couplings between
this worldline and the worldvolume fields on the D5 and
show that indeed there is a coupling of the form

SD3, eA = 2⇡

Z

C

eA (3.9)

where eA is the magnetic dual of the worldvolume gauge
field A. It satisfies

(d eA)MN

= N
p

�det4 (� + 2⇡↵0F )[(� + 2⇡↵0F )�1]PQ✏PQMN

(3.10)



Warming up: T = 0 conformal phase I [Iqbal’14]

Here the D3 action

SD3 = −T3

∫
D3

√
− det γ3

The D3 extends in (ψ, θ, φ) directions, and also where it ends on the D5 -brane, i.e. at

ψ = π
2

SD3 = T3Ω2R
3

∫ π
2

0
sin2 ψ dψ

∫
C
ds

it is a 4d magnetic monopole with an effective mass

mbmR =
2

π

∫ π
2

0
sin2 ψ dψ

in a conformal phase we expect [Borokhov-Kapustin-Wu’02]:

〈M (∆x)M† (0)〉 ∼
1

|∆x|2∆

This is what we get with the dimension of the unit-charge monopole operator at strong

coupling given by

∆ = T3Ω2R
3mbmR =

N

2R



Charge (un)gapped phase at finite T: The background

AdS5 × S5 metric at finite T:

ds2 =
u2

R2
(−h(u) dt2 + dx23) +

R2

u2

(
du2

h(u)
+ u2

(
dψ2 + sin2 ψ dΩ2

2 + cos2 ψ dΩ̃2
2

))
,

where h(u) = 1− (u0/u)4 with horizon at u = u0

The profile for D5 is described by ψ(u)

The general action for the D5 brane is

SD5 = T5

∫
D5

2πα′F ∧ C4 − T5

∫
D5

√
− det (γ5 + 2πα′F) .

For now: Switch off F



BH/ME phase at finite T: The background

Helpful coordinates [Mateos et al ’07]

(u0υ)
2 = u2 +

√
u40 − u4 , χ = cosψ

with horizon at υ = 1.

The AdS5 × S5 metric is

ds2 =
1

2

( u0υ

R

)2
[
−

f 2

f̃
dt2 + f̃ dx23

]
+

R2

υ2

(
dυ2 + υ2 dΩ2

5

)
,

where f = 1− 1/υ4 and f̃ = 1 + 1/υ4.

Temperature

T =
u0

πR2



BH/ME phase: D5 probe

The Euclidean D5-action for the D5 embedding specified by χ(υ)

SD5

N5
=

∫
dυ

(
1−

1

υ4

)√
(1 + υ4) (1− χ2) (1− χ2 + υ2χ̇2)

At the boundary: Asymptotic behaviour for χ

χ(υ) ∼
m

υ
+

c

υ2
+ . . . , υ → ∞

(m, c) are dimensionless and related to the boundary mass Mq and the “condensate”

〈Om〉 of U(1)B flavour charged d.o.f. [Kobayashi et al. 06] [Mateos et al. 06] [Mateos et al’07]

Mq =
υ0

2
√
2π`2s

m ⇔ m =
M̄

T
=

2
√
2

√
λ

Mq

T

〈Om〉 = −
4π`2s√

2
Ω2T5u

2
0c



BH/ME phase: D5 embedding at finite T

0.0 0.2 0.4 0.6 0.8 1.0
z0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ψ(z)

M = 1.08

M = 1.43

At finite temperature:

Minkowski embedding (ME): D5 ends at a finite value of the radial direction υm , before to meet

the horizon

Black-hole embedding (BHE): D5 reaches and enters the horizon υ = 1 at some angle

0 < ψ ≤ π
2 (0 ≤ χ < 1)

At zero temperature: ME: D5 ends at a finite value of the radial direction υm, before to

meet the Poincare horizon

At T = 0 and T 6= 0: there is always the constant solution: ψ = π
2



D5 phase diagram at finite T

at finite T there is a 1st order phase transition [Mateos et al. 07]

0.60 0.62 0.64 0.66
T/M

-0.34

-0.32

-0.30

-0.28

-0.26

-0.24

ID5/N

0.60 0.62 0.64 0.66
T/M

-0.6

-0.5

-0.4

-0.3

-0.2

c

at low T: D5 is in a ME: mass gap in “quark-antiquark” flavored charges (ME phase)

at high T: D5 is in BHE: gapless spectrum (BH phase)

Warning: this is not a confined/deconfined phase transition (there is a horizon now)



Monopole correlators in BH/ME phase

Here the D3 action

SD3 = −T3

∫
D3

√
− det γ3

The D3 extends in (s, ψ, θ, φ) directions, and it ends on the D5 -brane, i.e. at ψ = ψ(υ)

SD3 = N3

∫
C
ds

∫ ψ(υ)

0
sin2 ψ dψ

√
GMNẊMẊN

it is a 4D magnetic monopole particle with an effective mass

mbm(υ)R =
2

π

∫ ψ(υ)

0
sin2 u du

Recall: ψ controls the size of the S2 wrapped by the monopole D3



Monopole correlators in BH/ME phase

For the actual calculations: D3 as a point particle in the effective conformally rescaled

metric

ḠMN ≡ m2
bm(υ)GMN

Geodesic extends along (x(s), υ(s))

Compare against the disconnected configuration

D3 disconnected configuration

SD3

N3
= 2

∫ ∞

υm(1)
dυ

√
Ḡυυ = 2

∫ ∞

υm(1)
dυ

mmb(υ)R

υ



Monopole correlators in BH/ME phase

Then the monopole action becomes

SD3

N3
= 2

∫ ∞

υ∗
dυ

√
Ḡυυ

1− P2Ḡxx
= 2

∫ ∞

υ∗
dυ

mbm R

υ

√
1− 2P̂2

υ2 f̃

,

where P is a conserved momentum

P ≡ ẋ Ḡxx , P̂ =
P

πmbm R T

υ∗ is the turning point:

P2 = Ḡxx(υ∗) ⇒ υ2∗ = P̂2 +

√
P̂4 − 1 and P̂ ≥ 1

The temperature sets a lower bound on the momentum

This should be plotted against

∆x = 2

∫ ∞

υ∗

√
Ḡυυ

1− P2Ḡxx
Ḡxx P dυ ⇒ ∆x M̄ =

4

π

∫ ∞

υ∗

1

υ3 f̃

m P̂√
1− 2P̂2

υ2 f̃

dυ



Monopole correlators in a charge gapped (ME) phase: T=0 [Iqbal’14]

u

ψ

9

determine the curve (x(s), z(s)). There is a conserved
momentum

P ⌘ ẋGxx, (4.7)

and a constraint arising from reparametrization invari-
ance with respect to s:

Gxxẋ2 + Gzz ż
2 = 1 (4.8)

Using these relations, we solve for ż and write the net
change in x and the total action S in terms of the con-
served momentum P :

�x = 2

Z z?

✏

dz

s
Gzz

1 � G
xx

P 2
G

xx
P (4.9)

SD3 = 2

Z z?

✏

dz

s
Gzz

1 � G
xx

P 2
, (4.10)

where the turning point z? is the solution to G
xx

(z?) =
1

P 2 , and ✏ is a UV cuto↵. By varying P and performing
the integrals numerically we can find SD3[�x].

This action should be compared to that of the discon-
nected configuration, which is simply

Sdisc = 2

Z zm

✏

dz

q
Gzz (4.11)

The results from such an analysis are shown in Figure
7, and display precisely the behavior predicted above.
The critical value of �x of the phase transition is found
numerically to be

�x?M = 0.545 · · · . (4.12)

If we relax the assumption that the transverse coordi-
nates do not depend on  , then there may be an energet-
ically preferred configuration that will dominate. This
should a↵ect physics on the scale of the AdS radius R,
and thus may alter the precise value of �x?, but we
do not expect it to alter the qualitative shape of the
curve shown in Figure 7, which is essentially measuring a
geodesic length that probes scales much longer than the
AdS radius.

In this framework it is not possible to determine the
precise normalization of the monopole condensate. How-
ever we may track its dependence on the mass: the full
dependence on the mass comes from the UV logarithmic
divergence in the integral, so we find

hMi ⇠ exp

✓
�
Z zm

✏

dz

q
Gzz

◆
⇠ (M✏)

Nc
2 , (4.13)

in agreement with considerations around (2.11).

B. Monopole condensation as confinement in the
bulk

We now pause to discuss the bulk interpretation of this
calculation. On the worldvolume of the D5 brane lives

Dx*M0.3 0.4 0.5 0.6 DxM

17.0

17.5

18.0

SHDxL

FIG. 7. Monopole action on background with charge gap.
Solid black line represents favored configuration; red and blue
are unfavored branches of the disconnected (i.e. completely
flat) and connected (i.e. swallowtail) configurations respec-
tively. Note first-order transition at �x?M ⇡ 0.545.

a gauge field A: its dynamics is basically given by the
Maxwell action, and so it is in a Coulomb phase. If the
D5 brane caps o↵ at z = zm, from the 4d point of view,
what happens to A in the region z > zm, where the D-
brane simply does not exist? We are not actually allowed
to simply delete a gauge field in a region of space: rather,
we require an e↵ectively 4d mechanism to remove it from
the spectrum.

In this case, the mechanism is confinement. For z > zm

it is not true that the gauge field has ceased to exist;
rather its electric flux is forced into tight flux tubes that
we normally call fundamental strings. When these strings
end on the D5 brane they cross into a deconfined phase
and their flux is allowed to spill out into A, as shown in
Figure 8. The existence of such electric flux tubes is basi-
cally the definition of confinement. Indeed, confinement
on D-brane worldvolumes and the subsequent realization
of a fundamental string as an electric flux tube has been
argued to play an important role in brane/anti-brane an-
nihilation [33, 34], and the physics here is somewhat sim-
ilar, except that the confinement is localized in space and
(relatedly) should be thought of as confinement only from
the e↵ective 4d point of view.

In four dimensions confinement is also associated with
the condensation of magnetic monopoles, and indeed
we have seen explicitly above that monopoles have con-
densed for z > zm. Said slightly di↵erently, there is no
terribly good reason for the D5 brane to exist at all: it
wraps an S2 that is topologically trivial, and so the only
thing stopping it from collapsing to a point is energetics,
i.e. the fact that the slipping mode is dynamically sta-
ble. The magnetic monopole exploits this fact: looking
at Figure 4, we see that it is a localized excitation that
interpolates between an equatorial S2 and a degenerate
S2 that has shrunk to a point. Thus the monopole costs
some energy but uses it to collapse its parent D5 brane
in its vicinity. A condensate of monopoles is equivalent
to closing o↵ the brane over a macroscopic region.

It is interesting that we were able to perform a con-
trolled calculation to observe monopole condensation in

at T=0 in a charge gapped phase:

At u = um, ψ(um) = 0 and the effective mass for the monopole D3 goes to zero

(wrapped S2 shrinks to zero moving into the bulk)

closing off of the D5 ⇔ 4d “confinement” ⇔ condensate of monopoles

first order phase transition from a connected to a disconnected configuration at T = 0
picture by [Iqbal’14]: The correlator develops a vev

From a QFT approach: in a gapped phase and at large separation [Iqbal’14]:

〈M (∆x)M† (0)〉 ∼ 〈M〉2 6= 0



Monopole correlators in a ME phase at finite T

u

ψ

u0

at non-zero T in a ME phase: at um the monopole mass is zero: “thermal monopole

condensate”

1st order phase transition to a disconnected configuration

x

υ Δx

u0



Monopole correlators in a BH phase at finite T

υ

ψ

u0

at non-zero T in a BHE phase: at u0 (horizon) the monopole mass is non zero: there is

no monopole condensate

1st order phase transition to a disconnected configuration

x

υ Δx

u0



Monopole correlators in BH/ME phase at finite T

Meaning of the monopole transition: The correlator develops a vev

Here: The first order phase transition persists at arbitrary high T: it will always saturates

at any T

How the D5 phase transition affects ∆xcrit? ∆xcrit depends on T and at high T tends to

0 (plot on the left)

The transition point moves when increasing T (plot on the right)

0.0 0.1 0.2 0.3 0.4 0.5
T/M0.0

0.2

0.4

0.6

0.8

1.0

1.2
Δxcrit M



Finite density liquid phase at finite T: The background

Now: Switch on a gauge field on the D5 world-volume

2πα′F = R2a′t (υ)dυ ∧ dt

The general action for the D5 brane is

SD5 = T5

∫
D5

2πα′F ∧ C4 − T5

∫
D5

√
− det (γ5 + 2πα′F) .



Finite-density liquid phase: D5 probe

The D5-action for the D5 embedding specified by χ(υ)

SD5 = −N5V3

∫
dυ(1− χ2)χ2 f̃

√
1

2
π2T2

f 2

f̃

(
1 +

υ2χ′2

1− χ2

)
− a′t

2

The charge density is defined as

ρ =
1

V3

2π
√
λ

∂SD5

∂ (∂υat)
= 2π2NT2

υ2 f̃ a′t (1− χ2)√
1
2
π2T2

f 2

f̃

(
1 + υ2χ′2

1−χ2

)
− a′t

2

Maxwell e.o.m.: The charge density is conserved

∂υρ = 0



Finite-density liquid phase: D5 probe

Solve e.o.m. for χ:

at finite T and charge density ρ: we can only have a BHE up to ψ = π
2 (χ = 0)

(no explicit bulk sources)

at T = 0 and charge density ρ: only the massless embedding ψ = π
2 (χ = 0)

υ

ψ

u0



Monopole correlators in a finite density phase

Here the D3 action: geometrical + magnetic coupling term

SD3 = −T3

∫
D3

√
− det γ3 + qm

∫
C
Ã

The magnetic coupling

dÃ = ρ dx ∧ dy

The D3 extends in (s, ψ, θ, φ) directions, and it ends on the D5 -brane, i.e. at

ψ = ψ(υ(s))

SD3 = N3

∫
C
ds

∫ ψ(υ(s))

0
sin2 ψ dψ

√
GMNẊMẊN + iqm

∫
C
Ã

it is a 4D magnetic monopole particle with an effective mass

mbm(υ) =
1

R

∫ ψ(υ(s))

0
sin2 u du



Monopole correlators in a finite density phase

Now the geodesic extends along (x(s), y(s), υ(s)), and explicitly the Euclidean action is

SD3

N3
=

∫
C
ds − i q̃m ρ

∫
C
ds y(s) ẋ(s) .

the conserved momenta:

Px = Ḡxx ẋ(s)− iω y(s) , Py = Ḡxx ẏ(s) + iω x(s)

where the frequency is nothing but

ω ∼ qmρ

It is helpful to change the parametrization of the curve C such as

Ḡxx
d

ds
=

d

dη
, (1)

and rewrite the momenta Px , Py as

Px = x′(η)− iω y(η) , Py = y′(η) + iω x(η) .



Monopole correlators at finite density phase I

Solving the geodesic equation with boundary conditions

at η = 0 x(0) = 0 , υ(0) = υ∗

at η = ηi x(ηi) = ±
∆x

2
, y(ηi) = 0 , υ(ηi) = 0

we get

x(η) = β sinh(ωη) , y(η) = y0 + iβ cosh(ωη) ,

∆x = 2β sinh (ωηi) , y0 = −iβ cosh(ωηi) .

The final action for the bulk monopole:

SD3

N3
= 2

∫ ∞

υ∗
dυ

√
Ḡυυ

1− (ω Px)
2 Ḡxx

− i q̃m ρ

∫
C
y ẋ

and

ω ηi =

∫ ∞

υ∗
dυ ω Ḡxx

√
Ḡυυ

1− (ω Px)
2 Ḡxx



Monopole correlators at finite density phase: massless case

Computing explicitly the action

SD3

N3
= 2

∫ ∞

υ∗
dυ

mbmR

υ

√
1− 2P2

f̃υ2(mbmR)
2

+
π

2

P2

Q
(sinh(2ω̄η̄i)− 2ω̄η̄i)

with turning point

υ2∗ =
P2

(mbmR)2
+

√
P4

(mbmR)4
− 1

to be plotted against

∆x M̄ = 2
P
Q
m sinh(ω̄η̄i) , Q ∼

ρ

T2

where

ω̄η̄i = ωηi =
2

π

∫ ∞

υ∗
dυ

Q

υ3 f̃ mbmR

√
1− 2P2

f̃υ2(mbmR)
2

P = P̄xω̄ , P̄x = M̄ Px ω̄ =
ωm

πM̄2



Finite density phase for massless case: Results I

On the left: monopole correlators at fixed large temperature for three different charges,

blue (small) to green (large)

On the right: monopole correlators at fixed small temperature for three different

charges, blue (small) to green (large)

Straight line is the corresponding disconnected configuration



Finite density phase for massless case: Results II

On the left: At any T and any given separation, there is a critical charge above which the

magnetic coupling is dominant

On the right: the critical charge is rapidly increases as separation decreases

By fitting the curve at large separation: the bulk monopole action is a Gaussian function

of ∆x

at T=0 from holographic approach: [Iqbal’14]

〈M (∆x)M† (0)〉 ∼ e−
|qmρ|

4
(∆x)2

Compare with a QFT approach: the monopole correlator falls off exponentially [Kaul et al.

08][Kim et al ’94][Herbut et al. ’03][Hermele et al. ’04]



Summary and...

I reviewed a top-down approach proposed by Iqbal to engineer a bulk monopole

operator: wrapped D3 ending on the boundary of a probe D5

We computed the bulk monopole action at finite T: in the large N limit we computed the

monopole D3 action at finite T

gapped and ungapped phase: at any T the monopole develops a vev

finite density phase: for the massless case the monopole correlator decays exponentially

... outlook

For the finite density case: BHE case: is there a competing effect among the two terms?

what about a superfluid phase?

a monopole D5 in D3/probe D7

non-abelian monopoles? higher point functions?



Bonus track: Magnetic coupling

The general action for the D5 brane is

SD5 = T5

∫
D5

2πα′F ∧ C4 − T5

∫
D5

√
− det (γ5 + 2πα′F) . (2)

where C4 is the Ramond-Ramond 4-form, F = dA the field strength corresponding to the gauge

field living on the D5 world-volume, and γ5 the induced D5 world-volume metric. Notice that

for the brane configurations investigated in this work, only the second DBI term contributes,

since C4 is proportional to the volume of R4 ⊂ AdS5 and the product of the two S2 in S5.

The general action for the bulk monopole was computed in [?],

SD3 = T3

∫
D3

C4 − T3

∫
D3

√
− det (γ3 + 2πα′F) + qm

∫
C

Ã . (3)

SK =

∫
D5

K3 ∧ dF + qm

∫
∂D3

K3 , (4)

with

δΛC4 = Λ3 , δΛK3 = −2πα′T5Λ3 . (5)

Notice that this also fixes the value of the coupling qm to be

qm =
T3

2π α′ T5
= 2π . (6)

Adopting the same ansatz as in [?], that is

K3 =
1

4π
Ã ∧ V2 (7)



Bonus track: Constant

N5 = 2πR2u20T5 =
N

4π

λ

R2
T2

N3 = 2π2T3R
4 = N


