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Monopole operators

m Magnetic monopole operator M (Xm) [Borokhov-Kapustin-Wur02]

m Ina U(1) (2 + 1)d gauge theory: It is a localized defect that inserts a magnetic flux at a certain
point xp,

m in a path integral formalism: In a (2 + 1)d field theory with a global U(1): Apply an external
gauge field a;, coupled to the current j,

SQFT — SQFT — /dgxauj“

and promote a,, to be dynamical with boundary condition
df = g0 (x = xm)
where f = da, then
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Monopole operators

m Ina (2 + 1)d field theory global topological U(1) conserved current
J~ A
BUT now:
(O ()M (xm)) ~ qmS® (x = xin) (M xm)) + .. -
“particle” with magnetic charge g, with respect to j*

m Vortex-creating operator [Borokhov-Kapustin-wu02]: insertion at xm of a vortex charge qm
(magnetic flux through S? centred at xm)

m Topological disorder operator



Monopole operators: w

m non-local and non-perturbative (Dirac quantization): intrinsically interesting objects

m from a condensed matter point of view: order parameter in quantum phase transition

- continuous quantum phase transition from an antiferromagnet to a valence bond solid phase:

described by a CPN model with a condensation of monopoles at the critical point [Read'89][Read'90]
[Murthy-Sachdev'90]

- phase transition between compressible phases (superfluid and solid phase) in a doped (2 + 1)d
conformal field theory [Sachdev’12]



Goal and strategy

m |dea:
monopole operators relevant in a holographic approach to study quantum matter phases
[Faulkner-Iqbal 12][Sachdev’12] [iqbal 14][Filev'14]

m Goal:
- How does the system react to an injection of magnetic flux?

- Different matter phases are characterized by different answers to this question

- Relevant observables: monopole two-point functions

m Strategy: Computation of monopole correlators in AdS/CFT



Bulk monopoles at large N: general idea

m The idea is [Sachdev'I2] [Witten'03]:

On the bulk a particle electrically charged under A is dual to a (heavy) operator which
carries a charge under j (the dual boundary current)

On the bulk a particle magnetically charged under A is dual to a (heavy) operator which
carries a magnetic charge under j (picture by [igbar14])

m This is what we define a bulk magnetic monopole

m We will work with a top-down construction employed by Igbal figbari4]



Bulk monopoles: a top-down model |

m Background: D3/ probe-D5

- N> 1 D3-branes: AdSs x S° background

- D5-brane: probe and intersecting the D3's along (2 4 1)-d (embedding: AdSs x S?)

t X y X u P 0 [ 0 b
N D3 (background) X X X X
probe D5 (background) X X X X X X

m Field theory content: A" = 4 SYM in (3 + 1)-d with fundamental matter charged under
SU(N) living in the (2 + 1)-d defect with a U(1)g baryon number current

[DeWolfe-Freedman-Ooguri'01][Erdmenger-Guralnik-Kirsch'02][Karch-Katz'02]

m We focus on (2 + 1)-d defect field theory and U(1)g baryon number current



Bulk monopoles: a top-down model |l

m add an extra probe D3: wrapping an $2 C $° and its boundary (s, 8, ¢) ends on D5-brane

m D3 describes a world-line C in AdS,4

t X y X z P [ ) (4 [
N D3s X X X X
probe D5 X X X X X X
probe D3 [ X X X X

m D(p — 2)- branes ending on Dp-branes appear as magnetic charges in the Dp
world-volume [strominger'99]

Bulk monopole is a wrapped D3 ending on D5:

magnetically charged point-particle in AdS4 pqbari4]




From bulk to boundary monopoles: a top-down model Il

® When one end of the D3 world-line reaches the boundary at some point xm, this
corresponds to an insertion of a magnetic charge at a point xm: boundary monopole
operator

m In the large N limit, boundary monopole correlators computed by the D3 action [iqpari4):

(M(AX)MT(0)) ~ e=*p3[AA

where Ax is separation among the two D3 ends.

m This is the object we are going to compute at finite T



How do we proceed?

m Our background is thermal AdS5 x S°
m Insert the probe D5: We solve for the various D5 embedding

m Insert the probe D3 (bulk monopole): Compute the action with the condition that its
boundary ends on the D5.

m Repeat all the steps for various embeddings and with/without charge on the D5
world-volume.



Monopole correlators

m Action for the D3 monopole: [iqbari4]

SD3 =T3/ C47T3/ \/fdet('yg+27ra’F3)+qm/;\.
D3 D3 C

Third term: magnetic coupling between the D3 brane and the gauge field living on the D5

m The gauge invariance of the D3 and D5 action with respect to the gauge transformation
of C4 requires a 3-form Lagrange multiplier at the boundary of the D3

Qm/ Ks, Ks ~ AN Vo
ap3

with V2 the unit volume on S2 and qm = = 2.

T3
27 o’ Ty

m Ais the 4d magnetic dual of A, the D5 world-volume gauge field

~ C\NP
(dA)m ~ /— det (y5 + 2ma’ Fs) ((75 + 2ma’ F) 1) ELMNP »

At leading order: dA ~ %4F and is dual to the topological boundary current



Warming up: T = 0 conformal phase | gearig

m Background metricat T =0

u? R2
ds? = sz(—dﬁ +dx? +dy? +dx3) + = (du? + u? dQ2) |
dQ2 = dip? + sin? o dQ2 + cos? ¢ dQ32
where R is the AdS radius.
m D5 embedding: AdSy x S? specified by

™
¢:§7 x1 =0

m monopole D3: boundary wraps S? times a world-line in AdS4 and then it extends from
Pp=0toy) = g picture by [Iqbal'14]
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Warming up: T = 0 conformal phase | gearig

m Here the D3 action
Sp3z = —T3/ \/ — detnys3
D3

m The D3 extends in (1, 0, ¢) directions, and also where it ends on the D5 -brane, i.e. at
v=1
Sp3 = T3QQR3/2 sin2 4 dip /ds
0 C

m it is a 4d magnetic monopole with an effective mass

™

9 %
mpmR = 7/2 sin? ¢ dip
m™Jo

m in a conformal phase we expect [Borokhov-Kapustin-Wur02]:

1

(M (Ax) MT (0)) ~ e

This is what we get with the dimension of the unit-charge monopole operator at strong
coupling given by

N
A = T3QaR3mpmR = —
338462 bm 2R



Charge (un)gapped phase at finite T: The background

m AdSs x S® metric at finite T:

2
ds? = o5 (—h(u) df® +dx3)+— (:(”—)H (d¢2+sin2¢dﬂg+c052¢dﬂg)),

where h(u) = 1 — (uo/u)* with horizon at u = ug
m The profile for D5 is described by ) (u)

m The general action for the D5 brane is

SD5 =Ts5 / 2a’F A Cy — Ts / \/—det (’YS + 27TO£IF) .
D5 Ds

m For now: Switch off F



BH/ME phase at finite T: The background

m Helpful coordinates Mateos et al07]

(uov)? = u? + 4 /ud —ut, X = cos

with horizon at v = 1.

m The AdSs5 x S® metric is

1 supv\2 2 7 R?
o [ L] o o

wheref =1—1/vtandf =1+ 1/vt
m Temperature

uo
TR2



BH/ME phase: D5 probe

m The Euclidean D5-action for the D5 embedding specified by x(v)

Sp5 1 4 2 2 2.2
E:/dv(l_vj)\/(l""v)(1_X)(1_X + v2x2)
m At the boundary: Asymptotic behaviour for x

m ¢
x(v)~ —+ < +..., v — 00
v

m (m, c) are dimensionless and related to the boundary mass Mg and the “condensate”
(Om) of U(1)p flavour charged d.o.f. [Kobayashi et al. 06] [Mateos et al. 06] [Mateos et al07]

[N M

M - 2v/2 Mq
= ——m m= — _——
7 2y T T

4762
<Om> = *%Qzﬁsugc



BH/ME phase: D5 embedding at finite T

m At finite temperature:

m Minkowski embedding (ME): D5 ends at a finite value of the radial direction v, before to meet
the horizon

m Black-hole embedding (BHE): D5 reaches and enters the horizon v = 1 at some angle
0<yp<5(0<x<1

m At zero temperature: ME: D5 ends at a finite value of the radial direction v, before to
meet the Poincare horizon

m At T =0and T # 0: there is always the constant solution: ¢ = &



D5 phase diagram at finite T

m at finite T there is a Ist order phase transition [Mateos et al. 07]

}\

m at low T: D5 is in a ME: mass gap in “quark-antiquark” flavored charges (ME phase)

m at high T: D5 is in BHE: gapless spectrum (BH phase)

Warning: this is not a confined/deconfined phase transition (there is a horizon now)



Monopole correlators in BH/ME phase

m Here the D3 action

Sps = —T3/ \/—det~ys
D3

m The D3 extends in (s, ¢, 8, ¢) directions, and it ends on the D5 -brane, i.e. at ¢ = ¢ (v)

P(v) —
Spg = N3 / ds / sinZ ¢ dip \/ GunXMXN
C 0

m it is a 4D magnetic monopole particle with an effective mass

9 r¢(v)
Mpm (V)R = f/ sinZ u du
0

T

m Recall: 9 controls the size of the S? wrapped by the monopole D3



Monopole correlators in BH/ME phase

m For the actual calculations: D3 as a point particle in the effective conformally rescaled
metric

Gmn = mp, (V)G

m Geodesic extends along (x(s), v(s))
m Compare against the disconnected configuration

m D3 disconnected configuration

S m R
Sps _ 2/ N — m
'Um(l)

N3 ’Um(l)



Monopole correlators in BH/ME phase

m Then the monopole action becomes

S oo C oS} R
D39 / doy| —2— =2 / do—m=
N3 Vs 1— P2Gx Vs / 2p2
vy /1= U2F
v=f

where P is a conserved momentum

P

P = %Gy, = ——
s Tmem RT

B vy is the turning point:

PQ:CXX(U*) = vf:f’Q—i—\/FA"l—l and P>1

The temperature sets a lower bound on the momentum

m This should be plotted against

oo G _ _ 4 [ P
Ax:Z/ T Axsz/ — " 4
v VT-PG o OF [ _am

v2f




Monopole correlators in a charge gapped (ME) phase: T=0 pqwri4

T o7 Usmn i 0s XM

m at T=0 in a charge gapped phase:

At u = um, Y (um) = 0 and the effective mass for the monopole D3 goes to zero
(wrapped S? shrinks to zero moving into the bulk)

closing off of the D5 & 4d “confinement” <  condensate of monopoles

m first order phase transition from a connected to a disconnected configuration at T = 0
picure by [Iqbal'14]: The correlator develops a vev

m From a QFT approach: in a gapped phase and at large separation [igbar14):

(M (Ax) MT(0)) ~ (M)2 #£0



Monopole correlators in a ME phase at finite T

m at non-zero T in a ME phase: at uy, the monopole mass is zero: “thermal monopole
condensate”
m st order phase transition to a disconnected configuration




Monopole correlators in a BH phase at finite T

m at non-zero T in a BHE phase: at ug (horizon) the monopole mass is non zero: there is
no monopole condensate

m |st order phase transition to a disconnected configuration

=

Ax

00 05 10 15 20 25
M b



Monopole correlators in BH/ME phase at finite T

m Meaning of the monopole transition: The correlator develops a vev

m Here: The first order phase transition persists at arbitrary high T: it will always saturates

atany T

m How the D5 phase transition affects Axcrit? Axcrit depends on T and at high T tends to

0 (plot on the left)

m The transition point moves when increasing T (plot on the right)

WM
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Finite density liquid phase at finite T: The background

m Now: Switch on a gauge field on the D5 world-volume

2na’F = R%d](v)dv A dt
m The general action for the D5 brane is

Sps =Ts / 2ra’FANCy — Ts / —det (y5 + 2ma’F) .
D5 D5



Finite-density liquid phase: D5 probe

m The D5-action for the D5 embedding specified by x(v)

- /1 2 2,12
Sps = 7./\/'5V3/dv(1 202y e (1 L X ) —q?
2 f 1—x?

m The charge density is defined as

po L2 oy ey vifai(l —x?)
Vs VA 0 (Ovar) 1 272f2 v2x'2 /2
5T 7 (1+ 1—x2) —a

m Maxwell e.o.m.: The charge density is conserved

Oup=0



Finite-density liquid phase: D5 probe

m Solve e.o.m. for x:

m at finite T and charge density p: we can only have a BHE up to ¢ = 5 (x = 0)
(no explicit bulk sources)

m at T = 0 and charge density p: only the massless embedding ¢ = 7 (x = 0)




Monopole correlators in a finite density phase

m Here the D3 action: geometrical + magnetic coupling term

Sps = —T3/ V/ —detys +Qm/;\
D3 c
m The magnetic coupling
dA = pdx A dy

m The D3 extends in (s, ¢, 8, ¢) directions, and it ends on the D5 -brane, i.e. at

¥ =1(v(s))

P(v(s)) — _
SD3:N3/dS/ sin2¢dzp\/m+iqm/A
C 0 C

m it is a 4D magnetic monopole particle with an effective mass

Y (v(s))
Mpm (V) = %/) sin? udu



Monopole correlators in a finite density phase

m Now the geodesic extends along (x(s), y(s), v(s)), and explicitly the Euclidean action is

S
D3 /ds—lqmp/dsy

m the conserved momenta:
Py = G x(s) —iwy(s), Py = G y(s) +iwx(s)
where the frequency is nothing but
w ~ qmp
m |t is helpful to change the parametrization of the curve C such as

Cxxi = 17 )]
ds dn

and rewrite the momenta Py , P, as

Pe=x'(n) —iwy(n), Py =y'(n)+iwx(n).



Monopole correlators at finite density phase |

m Solving the geodesic equation with boundary conditions
at =0 x(0) =0, v(0) = vx

Ax
at n=mn  x(n)= = y(m)=0, wv(np)=0
we get

x(n) = Bsinh(wn),  y(n) = yo +iB cosh(wn),
Ax = 28 sinh (wn;) , yo = —if cosh(w;) .

m The final action for the bulk monopole:
@_2/mdv Lfiﬁp/yk
N3 . 1—(wr)?Ge= " Je

e XX C'U’U
wni = dvwG P
v 1 — (wPy)” G

and

*



Monopole correlators at finite density phase: massless case

m Computing explicitly the action

S o R 2
08— 2/ do—mmR TP (sinh(2wm;) — 2w
N3 Uy vl 1 — - 2Pp2 2 Q
fv2 (mpmR)?
m with turning point
2 4
V2 P P 1

- (mme)2 * (mme)4

m to be plotted against

AxM = ng sinh(&o7) , Q~ %
m where
_ 2 [ Q
wn;:wn;:;/v* dv - —
v3f mpmRy /1 — o (maR)Z
_ _ _ wm

P=P@, P=Mh o=_—5



Finite density phase for massless case: Results |

1 2 3 @ 5 6 7 00z 004 006 008 010 012 014

o A

m On the left: monopole correlators at fixed large temperature for three different charges,
blue (small) to green (large)

m On the right: monopole correlators at fixed small temperature for three different
charges, blue (small) to green (large)

m Straight line is the corresponding disconnected configuration



Finite density phase for massless case: Results

mfas, i, 1 o

On the left: Atany T and any given separation, there is a critical charge above which the
magnetic coupling is dominant

On the right: the critical charge is rapidly increases as separation decreases

By fitting the curve at large separation: the bulk monopole action is a Gaussian function
of Ax

at T=0 from holographic approach: [iqbar14]

(M (Ax) ME (0)) ~ e~ B (07

Compare with a QFT approach: the monopole correlator falls off exponentially [Kaul ecal.
08][Kim et al '94][Herbut et al. '03][Hermele et al. '04]



Summary and...

m | reviewed a top-down approach proposed by Igbal to engineer a bulk monopole
operator: wrapped D3 ending on the boundary of a probe D5

m We computed the bulk monopole action at finite T: in the large N limit we computed the
monopole D3 action at finite T

m gapped and ungapped phase: at any T the monopole develops a vev

m finite density phase: for the massless case the monopole correlator decays exponentially

.. outlook

m For the finite density case: BHE case: is there a competing effect among the two terms?
m what about a superfluid phase?
m a monopole D5 in D3/probe D7

m non-abelian monopoles? higher point functions?



Bonus track: Magnetic coupling

The general action for the D5 brane is
Sps = T5/ 21a’FACy — Ts / v/ —det(v5 + 2wa’F) . ()
D5 Ds

where C4 is the Ramond-Ramond 4-form, F = dA the field strength corresponding to the gauge
field living on the D5 world-volume, and =5 the induced D5 world-volume metric. Notice that
for the brane configurations investigated in this work, only the second DBI term contributes,
since Cy4 is proportional to the volume of R* C AdSs and the product of the two S2 in S°.
The general action for the bulk monopole was computed in [?],

sbgzrg/ c4—T3/ Wﬂm/;x. 3)
D3 D3 C

SK:/ K3/\dF+qm/ K3, 4)
D5 D3
with
orACqs = A3, opaKz = —2ma’TsA3. (5)
Notice that this also fixes the value of the coupling gm to be
T3
=  =2r. 6
gm 2ral Ts T ©)

Adopting the same ansatz as in [?], that is

1 -~
Kz = —AA Vs )]
47



Bonus track: Constant

N X
N5 = 27R%u3Ts = ER?TQ

Ns =2m2T3R* =N



