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Outline

1. Kondo models from holography

Model J.E., Hoyos, O’Bannon, Wu 1310.3271
Screening, resistivity
Quantum quenches J.E., Flory, Newrzella, Wu in progress
Entanglement entropy J.E., Flory, Newrzella 1410.7811

J.E., Hoyos, Newrzella, O’Bannon, Wu in progress
Two-point functions J.E., Hoyos, O’Bannon, Papadimitriou, Probst, Wu in progress

2. S-Wave Superconductivity in Anisotropic Holographic Insulators
J.E., Herwerth, Klug, Meyer, Schalm 1501.07615

Scalar condenses in helical Bianchi VII background
Homes’ Law
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Kondo effect:

Screening of a magnetic impurity by conduction electrons at low temperatures

Motivation for study within gauge/gravity duality:

1. Kondo model: Simple model for a RG flow with dynamical scale generation

2. New applications of gauge/gravity duality to condensed matter physics:

Magnetic impurity coupled to strongly correlated electron system
Entanglement entropy
Quantum quench
Kondo lattice
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Kondo effect
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Kondo model

Original Kondo model (Kondo 1964):
Magnetic impurity interacting with free electron gas

Impurity screened at low temperatures:
Logarithmic rise of resistivity at low temperatures

Dynamical scale generation

Due to symmetries: Model effectively (1 + 1)-dimensional

Hamiltonian:

H =
vF
2π
ψ†i∂xψ + λKvFδ(x)~S · ~J , ~J = ψ†

1

2
~Tψ

Decisive in development of renormalization group
IR fixed point, CFT approach Affleck, Ludwig ’90’s
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Kondo models from gauge/gravity duality

Gauge/gravity requires large N : Spin group SU(N)

In this case, interaction term simplifies introducing slave fermions:

Sa = χ†T aχ

Totally antisymmetric representation: Young tableau with Q boxes

Constraint: χ†χ = Q

Interaction: JaSa = (ψ†T aψ)(χ†T aχ) = OO†, where O = ψ†χ

Screened phase has condensate 〈O〉

Parcollet, Georges, Kotliar, Sengupta cond-mat/9711192
Senthil, Sachdev, Vojta cond-mat/0209144
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Kondo models from gauge/gravity duality

J.E., Hoyos, O’Bannon, Wu 1310.3271, JHEP 1312 (2013) 086

Coupling of a magnetic impurity to a strongly interacting non-Fermi liquid

Results:

RG flow from perturbation by ‘double-trace’ operator

Dynamical scale generation

Holographic superconductor: Condensate forms in AdS2

Power-law scaling of conductivity in IR with real exponent

Screening, phase shift
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Kondo models from gauge/gravity duality

J.E., Hoyos, O’Bannon, Wu 1310.3271, JHEP 1312 (2013) 086

Top-down brane realization

0 1 2 3 4 5 6 7 8 9
N D3 X X X X
N7 D7 X X X X X X X X
N5 D5 X X X X X X

3-7 strings: Chiral fermions ψ in 1+1 dimensions

3-5 strings: Slave fermions χ in 0+1 dimensions

5-7 strings: Scalar (tachyon)
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Near-horizon limit and field-operator map

D3: AdS5 × S5

D7: AdS3 × S5→ Chern-Simons Aµ dual to Jµ = ψ†σµψ

D5: AdS2 × S4→
{

YM at dual toχ
†χ = q

Scalar dual toψ†χ

Operator Gravity field
Electron current J ⇔ Chern-Simons gauge field A in AdS3

Charge Q = χ†χ ⇔ 2d gauge field a in AdS2

Operator O = ψ†χ ⇔ 2d complex scalar Φ
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Bottom-up gravity dual for Kondo model

Action:
S = SCS + SAdS2,

SCS = −N
4π

∫
AdS3

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
,

SAdS2 = −N
∫
d3x δ(x)

√
−g
[

1

4
Trfmnfmn + gmn (DmΦ)

†
DnΦ + V (Φ†Φ)

]
V (Φ) = M2Φ†Φ

Metric:

ds2 = gµνdx
µdxν =

1

z2

(
dz2

h(z)
− h(z) dt2 + dx2

)
,

h(z) = 1− z2/z2
H , T = 1/(2πzH)
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‘Double-trace’ deformation by OO†

Boundary expansion

Φ = z1/2(α ln z + β)

α = κβ

κ dual to double-trace deformation Witten hep-th/0112258

Φ invariant under renormalization⇒ Running coupling

κT =
κ0

1 + κ0 ln
(

Λ
2πT

)
Dynamical scale generation

11



Kondo models from gauge/gravity duality

Scale generation

Divergence of Kondo coupling determines Kondo temperature TK

Transition temperature to phase with condensed scalar: Tc

Tc < TK
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Kondo models from gauge/gravity duality

RG flow

UV

IR

Strongly interacting

electrons

Deformation by

Kondo operator

Non-trivial condensate

Strongly interacting

electrons
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Kondo models from gauge/gravity duality

Normalized condensate 〈O〉 ≡ κβ as function of the temperature

(a) (b)

Mean field transition

〈O〉 approaches constant for T → 0
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Kondo models from gauge/gravity duality

Electric flux at horizon

(a)

√
−gf tr

∣∣∣
∂AdS2

= q, charge density q = Q/N

Impurity is screened
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Kondo models within gauge/gravity duality

Resistivity obtained from leading irrelevant operator
(No logarithmic behaviour due to the large N limit)

Dimension: ∆ = 1/2 +
√

1/4 + 2φ2
∞ = 1.07

Entropy density: s = s0 + csλOT
∆−1

Resistivity: ρ = ρ0 + cρλOT
∆
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Time dependence

Allow for time dependence of the Kondo coupling and study response of the
condensate

Examples for time dependence of the Kondo coupling:

Gaussian pulse in IR

Quench from condensed to normal phase (IR to UV)

Quench from normal to condensed phase (UV to IR)

Observations:

Different timescales depending on whether the condensate is asymptotically
small or large

Anderson orthogonality catastrophe? τ ∼ 1/〈initial|final〉
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Quantum quenches in
holographic Kondo model
To and from condensed phase

Timescales determined by
quasinormal modes

J.E., Flory, Newrzella, Strydom, Wu
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Timescales in quantum quench
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Timescales in quantum quench

10 20 30 40 50 60

30

25

20

15

10

5

10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

Quench time
scale

Quasinormal 
ringing

21



Entanglement entropy for magnetic impurity

Including the backreaction using a thin brane and Israel junction conditions

Israel junction conditions Kµν − γµνK = −κ2 Tµν ⇔ Energy conditions

identify points

boundary boundary

hypersurface

bulkbulk

J.E., Flory, Newrzella 1410.7811

In extension of previous work on holographic BCFT
Takayanagi; Fujita, Takayanagi, Tonni 2011; Nozaki, Takayanagi, Ugajin 2012
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Entanglement entropy for magnetic impurity

AB

AdS

Impurity entropy:

Simp = Scondensed phase − Snormal phase

Subtraction also guarantees UV regularity
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Entanglement entropy for magnetic impurity J.E., Flory, Newrzella 1410.7811

Depending on the brane tension λ, the total space is enhanced or reduced
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Entanglement entropy for magnetic impurity J.E., Flory, Newrzella 1410.7811
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Impurity entropy from gauge/gravity duality
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Entanglement entropy for magnetic impurity: Comparison to field theory

Field theory result Sorensen, Chang, Laflorencie, Affleck 2007
(Eriksson, Johannesson 2011)

∆Simp(`) =
π2ξKT

6
coth(2π`T ) + C0



Entanglement entropy for magnetic impurity: Comparison to field theory

Field theory result Sorensen, Chang, Laflorencie, Affleck 2007
(Eriksson, Johannesson 2011)

∆Simp(`) =
π2ξKT

6
coth(2π`T ) + C0

In our gravity approach:
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Entanglement entropy for magnetic impurity: Comparison to field theory

On gravity side:

Impurity entropy from difference of entanglement entropies for constant tension
branes

∆Simp(`) = c0 + SBH(`+D)− SBH(`)

SBH(`) =
c

3
ln

(
1

πεT
sinh(2π`T )

)



Entanglement entropy for magnetic impurity: Comparison to field theory

On gravity side:

Impurity entropy from difference of entanglement entropies for constant tension
branes

∆Simp(`) = c0 + SBH(`+D)− SBH(`)

SBH(`) =
c

3
ln

(
1

πεT
sinh(2π`T )

)

For D � `:

∆Simp(`) ∼ c0 +D · ∂`SBH(`) = c0 +
2πDT

3
coth(2π`T )

Agrees with field theory result subject to identification D ∼ ξK
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Universal properties of superconductors

Universality: IR fixed point determines physical properties
Macroscopic properties do not depend on microscopic degrees of freedom

Example: Universal result from gauge/gravity duality:

Shear viscosity over entropy density:
η

s
=

1

4π

~
kB

Planckian dissipator: relaxation time τ = ~
kBT

Damle, Sachdev 1997
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Universal properties of superconductors

Is there a similiar universal result for applications of the duality within condensed
matter physics?
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Universal properties of superconductors

Candidate: Homes’ relation
ρs(T = 0) = C σDC(Tc)Tc

C. Homes et al, Nature 2004

31



Universal properties of superconductors

Homes’ relation ρs(T = 0) = C σDC Tc

general form may be deduced from Planckian dissipation Zaanen 2004



Universal properties of superconductors

Homes’ relation ρs(T = 0) = C σDC Tc

general form may be deduced from Planckian dissipation Zaanen 2004

J.E., Herwerth, Klug, Meyer, Schalm arXiv:1501.07615:

Investigation of C in a family of gauge/gravity duality models

In particular region of parameter space:

C ≈ 6.2

BCS superconductor in ‘dirty limit’: C = 8.1,
High-Tc superconductors: C = 4.4
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Universal properties of superconductors

Holography: J.E., Kerner Müller 2012

Conditions for identifying ρs:

Translation symmetry broken ⇒ Drude peak

Applicability of sum rules:

All normal state degrees of freedom condense at T = 0

Weak momentum relaxation is not enough

Horowitz, Santos 2013

Use background with helical symmetry
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Universal properties of superconductors

Background: Helical Bianchi VII symmetry
Donos, Gauntlett 2011; Donos, Hartnoll 2012

Model with broken translation symmetry:

ω2-one form field
in yz-plane

x
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Gauge/gravity duality with helical symmetry

Background: (Hartnoll, Donos)
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Add charged scalar:



S-wave superconductivity in helical symmetry background

Add charged scalar:

All charged degrees of freedom condense at T = 0
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Universal properties of superconductors

Phase diagram
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σDCTc

ρ
s

Homes’ relation for q = 6 & κ = 0

p/µ

ρ
s

σ
D

C
T
c

Homes’ constant @ κ = 0

1.8

2.4

4.2

3.8

4.2
4.2

4.4

J.E., Herwerth, Klug, Meyer, Schalm 1501.07615
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Conclusions and outlook

Kondo model:

Magnetic impurity coupled to strongly coupled system

Quantum quench

Entanglement entropy

Outlook: Two-point and spectral functions

S-wave superconductor in Bianchi VII background:

Homes’ Relation
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