Semileptonic Decays from Belle

 \mathcal{R}

Contents

Introduction

- Analyses for Vub
 - Inclusive $\mathbf{B} \rightarrow X_u \mathbf{1} \mathbf{v}$ with full-recon. PRL submitted, hep-ex/0505088
 - Inclusive $B \rightarrow X_u l v$ with end-point PLB accepted, hep-ex/0504046
 - Exclusive **B** \rightarrow **X**_u **l** v with semileptonic tag. (*prelim.*)

Analyses towards precise V_{cb}

- Inclusive **B** \rightarrow **X** e v with full-recon. PLB 614, 27 (2005)
- $B \rightarrow X l v$ hadronic mass moments (*prelim.*)
 - $B \rightarrow X l v$ lepton energy moments (*prelim*.)

Motivation

Fundamental free parameters

- Majority of free parameters in the SM are related to quark (and lepton) flavors : masses and mixings
- Quark flavor mixing through **CKM** matrix

Unitarity triangle

- Direct test of CP violation mechanism in SM
- V_{ub}: still a weak link in CKM test
- V_{cb} : as fundamental as V_{ub}
 - Super-high precision, experimentally
 - A good testing ground of strong int. theory

 φ_2

Issues in V_{ub} measurement

• Use B \rightarrow X_u I v (semileptonic)

- Cleaner, better understood than B \rightarrow hadronic
- More accessible than $B \rightarrow$ leptonic
- Inclusive and Exclusive
- Experimentally challenging

$$|V_{cb}| >> |V_{ub}|$$

 Tight selection criteria results in Limited phase space
 Extra theoretical uncertainties (from extrapolation)

Beauty 2005, June 20-24, 2005 Youngjoon Kwon (Yonsei Univ. / Belle)

Variables to suppress b \rightarrow c l v

•
$$p_l > \frac{\left(M_B^2 - M_D^2\right)}{2M_B} \approx 2.3 \text{ GeV/c}$$
 (10% phase sp.)
• $q^2 > \left(M_B - M_D\right)^2 \approx 11 (\text{GeV/c})^2$ (~80%)
• $M_X < M_D \approx 1.8 \text{ GeV/c}^2$ (~30%)
• $M_X < M_D \approx 1.8 \text{ GeV/c}^2$ (~30%)
• $P_+ < M_D^2 / M_B \approx 0.66 \text{ GeV}$
($P_+ \equiv E_X - |\vec{p}_X|$)
PHYSICAL REVIEW LETTERS
Proposal for a Precision Measurement of $|V_{ub}|$
Stefan W. Bosch, Björn O. Lange, Matthias Neubert, and Gil Paz
gh-Energy Phenomenology, Laboratory for Elementary-Particle Physics, Cornell
(Received 22 March 2004; published 22 November 2004)
hadrons
hadrons
hadrons
hadrons
hadrons
hadrons
 M_X
($P_+ = E_X - |\vec{p}_X|$)
 $P_+ (Sical Review Letters)$
 $P_- [GeV]$

Beauty 2005, June 20-24, 2005 Youngjoon Kwon (Yonsei Univ. / Belle)

Inclusive B \rightarrow X_u l v with End-point

Main features

- Measure $\Delta \mathcal{B}(B \rightarrow X_u e \nu, p_e > p_{cut})$
- Kinematic selection
 - *p_e* > *p_{cut}
 <i>p_{cut}* = 1.9, 2.0, 2.1, 2.2, 2.3 and 2.4 GeV/c
- No requirement other than on the signal electron
 > high statistics
- Large background from B → X_c e v
 bkg. sys. uncertainty

need shape ftn.!

b-quark Shape Function

- What is it?
 - b-quark Fermi motion inside the B-meson
- How to get it?
 - Universal at leading order for all $b \rightarrow$ light quark transitions
 - − Use E(γ) in B → $X_s \gamma$

Youngjoon Kwon (Yonsei Univ. / Belle)

Three models for SF

$$F^{(\text{exp})}(\hat{\omega};\Lambda,b) = \frac{N^{(\text{exp})}}{\Lambda} \left(\frac{\hat{\omega}}{\Lambda}\right)^{b-1} \exp\left(-d_{(\text{exp})}\frac{\hat{\omega}}{\Lambda}\right),$$

$$F^{(\text{gauss})}(\hat{\omega};\Lambda,b) = \frac{N^{(\text{gauss})}}{\Lambda} \left(\frac{\hat{\omega}}{\Lambda}\right)^{b-1} \exp\left(-d_{(\text{gauss})}\frac{\hat{\omega}^{2}}{\Lambda^{2}}\right),$$

$$F^{(\text{hyp})}(\hat{\omega};\Lambda,b) = \frac{N^{(\text{hyp})}}{\Lambda} \left(\frac{\hat{\omega}}{\Lambda}\right)^{b-1} \cosh^{-1}\left(d_{(\text{hyp})}\frac{\hat{\omega}}{\Lambda}\right).$$

Neubert & Paz, hep-ph/0504071

1σ Contour

Event Selection

Energy Flow Discriminant Arbitrary Units 90'0 80'0 Signal Hadronic events Continuum • Electrons in the barrel region ▶ eff. ~ 94%; fake rate ~ 0.13% 0.04 > J/ ψ , ψ (2S), γ , π^0 veto 0.02 Continuum suppression 0 0 » Fox-Wolfram moment F_{FLOW} (GeV) > Fisher disc. for energy-flow variab q^2 dependence of Efficiency $|\cos \theta_{th}| < 0.75$ C.0.3 Efficiency 0.25 0.2 > as q² independent as possible Background estimated by 0.15 > $b \rightarrow c$ MC and Off-resonance Data 0.1 > low-p region for check 0.05 $1.5 < p_e < p_{cut} (GeV/c)$ 0 0 10 15 5 20 25 q^2 (GeV $^2/c^2$)

Beauty 2005, June 20-24, 2005 Youngjoon Kwon (Yonsei Univ. / Belle)

E(e) spectrum for $B \rightarrow X_u e v$

Beauty 2005, June 20-24, 2005 Youngjoon Kwon (Yonsei Univ. / Belle)

$\Delta \mathcal{B}$ – partial BF

.53
).98
).48
0.20
0.07
0.03

• Two methods for $\Delta \mathcal{B} \rightarrow V_{ub}$ - Standard method (DFN, JHEP 9906, 017)

 $|V_{ub}| = 0.00424 \sqrt{\frac{\mathcal{B}(B \to X_u e\nu_e)}{0.002} \frac{1.604 \text{ ps}}{\tau_B}} \times (1.0 \pm 0.028_{\lambda_{1,2}} \pm 0.039_{m_b})$

- New method (BLNP, NP B699 (2004)) $|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(1 + \delta_{\text{RAD}})}{\tau_{D}} \frac{1}{R}}$

\mathbf{V}_{ub} from $\Delta \mathcal{B}$

	$p_{\rm CM}({\rm GeV}/c)$	$\delta_{ m RAD}$	$\mathcal{B}(B \to X_u e \nu_e)(10^{-3})$	$ V_{ub} (10^{-3})(\text{DFN})$
	1.9 - 2.6	0.06 ± 0.02	$2.80 \pm 0.52 \pm 0.41$	$5.01 \pm 0.47 \pm 0.17 \pm 0.32 \pm 0.24$
DFN	2.0 - 2.6	0.07 ± 0.02	$2.49 \pm 0.45 \pm 0.47$	$4.73 \pm 0.42 \pm 0.19 \pm 0.40 \pm 0.23$
	2.1 - 2.6	0.07 ± 0.02	$2.34 \pm 0.33 \pm 0.59$	$4.59 \pm 0.32 \pm 0.22 \pm 0.53 \pm 0.22$
	2.2 - 2.6	0.09 ± 0.03	$2.16 \pm 0.25 \pm 0.73$	$4.41 \pm 0.25 \pm 0.27 \pm 0.69 \pm 0.21$
	2.3 - 2.6	0.10 ± 0.03	$2.22 \pm 0.24 \pm 1.02$	$4.47 \pm 0.24 \pm 0.36 \pm 0.96 \pm 0.22$
	2.4 - 2.6	0.11 ± 0.04	$2.39 \pm 0.38 \pm 1.46$	$4.63 \pm 0.37 \pm 0.53 \pm 1.32 \pm 0.22$

	$p_{\rm CM}({\rm GeV}/c)$	$R\left(V_{ub} ^2 \mathrm{ps}^{-1}\right)$	$ V_{ub} (10^{-3}) (BLNP)$
	1.9 - 2.6	$21.69 \pm 3.62 {}^{+ 2.18}_{- 1.98}$	$5.08 \pm 0.47 \pm 0.42 \substack{+ 0.26 \\ - 0.23}$
DLINF	2.0 - 2.6	$16.05 \pm 3.05 {}^{+ 1.83}_{- 1.72}$	$4.87 \pm 0.43 \pm 0.46 ^{+0.28}_{-0.26}$
	2.1 - 2.6	$10.86 \pm 2.51 ^{+1.61}_{-1.57}$	$4.83 \pm 0.33 \pm 0.56 ^{+0.36}_{-0.35}$
	2.2 - 2.6	$6.46 \pm 1.54 ^{+1.54}_{-1.53}$	$4.77 \pm 0.26 \pm 0.57 ^{+0.57}_{-0.56}$
	2.3 - 2.6	$3.15 \pm 0.88 {}^{+ 1.55}_{- 1.54}$	$5.07 \pm 0.71 \pm 0.52 {}^{+ 1.25}_{- 1.24}$
	2.4 - 2.6	$1.12 \pm 0.39 {}^{+ 1.48}_{- 1.48}$	$5.70 \pm 1.00 \pm 0.67 \substack{+ \ 3.77 \\ - \ 3.76 }$

Inclusive B \rightarrow X_u l v with Full-Recon.

Full Reconstruction

Signal selection

Lepton Selection

- *p* > 1 GeV/*c*
- leptons in the barrel region > J/ ψ , γ , π^0 veto
- Correct charge for B+ candidate
- No other lepton

```
N_{\rm sl} = (9.15 ± 0.05) x 10<sup>4</sup>
```

For $b \rightarrow u$

- Total charge = 0
- $-1.0 < m_{\rm miss}^2 < 0.5 \,{\rm GeV}^2$
- $|\cos\theta_{\rm miss}| < 0.95$
- No reconstructed K_S or K[±]

∾ີ_ບ 14000

/MeV/ 12000

6000

4000

2000

°.

a)

$M_{\rm bc}$ after Lepton Requirements

Kinematic selections

Beauty 2005, June 20-24, 2005 Youngjoon Kwon (Yonsei Univ. / Belle)

(1) $M_x < 1.7 \text{ GeV}$

- Each bin content is calculated from Mbc fit
- 2-component fit to extract $N(b \rightarrow u)$

Each Bin Content

--

21

(2) $M_x < 1.7 \text{ GeV } \& q^2 > 8 \text{ GeV}^2$

(3) $P_+ < 0.66 \text{ GeV}$

- First measurement using P₊

Signal Yield & ΔB

TABLE I: $N_{b\to u}^{\text{raw}}$, $\varepsilon_{\text{sel}}^{b\to u}$, F and $r_{b\to u}^{\text{sl}}$ for the three kinematic signal regions.

\mathbf{V}_{ub} from $\Delta \mathcal{B}$

New method $- V_{ub} \text{ directly from } \Delta \mathcal{B} \qquad |V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\mathcal{R} \cdot \tau_B}}$ R by Bosch, Lange, Neubert, Paz, NPB699 (2004) with an improved treatment of shape-function effects + weak annihilation effects estimated

$$R(\text{ps}^{-1}) = \begin{cases} 21.6 \pm 4.0(SF)_{-2.3}^{+2.4}(thy.) & M_X / q^2 \\ 40.9 \pm 7.5(SF)_{-2.9}^{+3.2}(thy.) & M_X \\ 33.2 \pm 6.8(SF)_{-2.3}^{+2.3}(thy.) & P_+ \end{cases}$$

	$ V_{ub} $	stat	syst	b→u	b→c	SF	theo.
$m_{\chi}-q^2$	4.93×10^{-3}	5.0	4.4	3.1	2.7	9.3	+5.0
m _X	4.35×10^{-3}	4.6	3.5	3.1	1.1	9.2	+3.6
P_+	4.56×10^{-3}	4.7	4.6	3.2	4.4	10.2	+3.4
	Beauty 2005, June 2	0-24, 2005	5 Youngj	oon Kwon (Y	'onsei Univ.	/ Belle)	

Exclusive B \rightarrow X_u l v with S.L. tag

Experimental Strategy

Analysis Method

Kinematics of double semileptonic decay

Back-to-back correlation of the two B's constrains their direction to the intersection of the 2 cones.

$$x_{B} = \pm \sqrt{1 - \frac{1}{\sin\theta_{12}} (\cos^{2}\theta_{B_{1}} + \cos^{2}\theta_{B_{2}} - 2\cos\theta_{B_{1}}\cos\theta_{B_{2}}\cos\theta_{12})},$$

To have intersection, need $0 \le x_B^2 \le 1$

2-fold ambiguity \rightarrow q² calculated neglecting the B motion in Y(4S) q² resolution = 0.75 GeV²

Calibration with $B_{sig} \rightarrow D^*l v$ Decays

Validity of the method for double semileptonic decay detection has been tested with $B_{ii} \rightarrow D^{*-} l^+ \overline{\nu}$

The ratio Nobs/Nexpected = 0.89 ± 0.08 is used to correct the MC efficiency for π / v and ρ / v detection.

The method works !

Signal Extraction

q² distribution is extracted by fitting the (m_X, x²) distrib. for three q² intervals.
 m_X (GeV/c²)

- Fitting components: π Iv, ρ Iv, other Xu Iv, and BB
 PDF's are based on MC.
- Constraint for extracted Br:

 $Br(\pi Iv) + Br(\rho Iv) + Br(other Xu Iv) = Br(Xu Iv)$ 82±13 65±20

Beauty 2005, June 20-24, 2005 Youngjoon Kwon (Yonsei Univ. / Belle)

Results

average Form-Factor Models

variation as theory error

 $\begin{aligned} \mathcal{B}(\mathrm{B}^{0} \to \pi^{-} \ell^{+} \nu) &= (1.76 \pm 0.28(\mathrm{stat.}) \pm 0.20(\mathrm{sys.}) \pm 0.03(\mathrm{FF})) \times 10^{-4} \\ \mathcal{B}(\mathrm{B}^{0} \to \rho^{-} \ell^{+} \nu) &= (2.54 \pm 0.78(\mathrm{stat.}) \pm 0.85(\mathrm{sys.}) \pm 0.30(\mathrm{FF})) \times 10^{-4} \end{aligned}$

Vub from exclusive $B \rightarrow X_u l v$

• V_{ub} determined with relation $|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B^0 \rightarrow \pi^- \ell^+ \nu)}{\Gamma_{th} \cdot \tau_B}}$ • only $\pi^- \ell^+ \nu$ with $q^2 > 16 \text{GeV}^2$ is used • with Γ_{th} from Quenched LQCD $|V_{ub}| = (3.90 \pm 0.71 \pm 0.23^{+0.62}_{-0.48}) \times 10^{-3}$

• with Γ_{th} from Unquenched LQCD

 $|V_{ub}| = (3.87 \pm 0.70 \pm 0.22^{+0.85}_{-0.51}) \times 10^{-3} \text{ (FNAL04)}$ $|V_{ub}| = (4.73 \pm 0.85 \pm 0.27^{+0.74}_{-0.50}) \times 10^{-3} \text{ (HPQCD)}$

Analyses towards precise Vcb

Inclusive $\mathbf{B} \rightarrow \mathbf{X} \mathbf{e} \mathbf{v}$ (0th moment)

- **B** \rightarrow X l v hadronic mass moments (*prelim*.)
- **B** \rightarrow X l v lepton energy moments (*prelim*.)

 $\mathcal{B}(\mathbf{B} \to \mathbf{X} \mathbf{e} \nu)$

PLB 614, 27 (2005) Electron Momentum

- A.K.A. 0-th Moment
- Analysis with 140 fb⁻¹
- Full reconstruction in the Tag side
- Measure B⁰ and B[±] seperately

$$\begin{aligned} \mathcal{B}(B^0 \to Xe\nu, \ p^* > 0.6 \text{ GeV}) &= (\ 9.83 \pm 0.34 \pm 0.33)\% \\ \mathcal{B}(B^{\pm} \to Xe\nu, \ p^* > 0.6 \text{ GeV}) &= (10.62 \pm 0.25 \pm 0.35)\% \\ \frac{\mathcal{B}(B^{\pm} \to Xe\nu, \ p^* > 0.6 \text{ GeV})}{\mathcal{B}(B^0 \to Xe\nu, \ p^* > 0.6 \text{ GeV})} &= 1.08 \pm 0.05 \pm 0.02 \end{aligned}$$

B \rightarrow X l v moments

Leptonic and hadronic moments

- Needed for global fit for precise V_{cb}
- Common features
 - Preliminary with 140 fb⁻¹
 - Full-recon. in the tag side
 - Boost from B_{tag}
 - QED correction by PHOTOS
 - Mixing correction
 - Unfolded by SVD method

Leptonic moments

E_{cut} (GeV)

E_{cut} (GeV)

	M ₁ (M	MeV)	$M_2 (10^3)$	MeV ²)
$E_{\rm cut}^*$ (GeV)	B±	\mathbf{B}^0	B±	\mathbf{B}^0
0.6	$1432.1 \pm 4.3 \pm 3.6$	$1444.9 \pm 5.5 \pm 2.8$	$150.1 \pm 1.8 \pm 1.2$	$144.0 \pm 2.1 \pm 1.0$
0.8	$1487.1 \pm 3.9 \pm 2.2$	$1488.0 \pm 5.1 \pm 1.8$	$118.4 \pm 1.4 \pm 0.7$	$119.0 \pm 1.8 \pm 0.6$
1.0	$1554.1 \pm 3.6 \pm 1.1$	$1551.5 \pm 4.7 \pm 1.0$	$88.1 \pm 1.1 \pm 0.3$	$90.7 \pm 1.4 \pm 0.3$
1.2	$1631.7 \pm 3.3 \pm 0.7$	$1632.6 \pm 4.3 \pm 0.8$	$61.7 \pm 0.8 \pm 0.1$	$64.1 \pm 1.1 \pm 0.2$
1.5	$1774.8 \pm 2.8 \pm 0.7$	$1778.2 \pm 3.8 \pm 0.7$	$30.6 \pm 0.5 \pm 0.1$	$32.3 \pm 0.7 \pm 0.1$

Hadronic moments

- $p_X = p_{\Upsilon_{4S}} p_{B_{tag}} p_\ell p_\nu$
- *M*_X distribution

Hadronic moments

$p_{\rm cut}^*$ (Ge	$(m_X) \langle m_X \rangle (GeV)$	$\langle m_{\chi}^2 \rangle$ (GeV ²)
0.9	$2.076 \pm 0.009 \pm 0.010$	$4.334 \pm 0.046 \pm 0.051$
1.0	$2.073 \pm 0.009 \pm 0.010$	$4.312 \pm 0.042 \pm 0.049$
1.2	$2.066 \pm 0.008 \pm 0.006$	$4.258 \pm 0.036 \pm 0.036$
1.4	$2.056 \pm 0.007 \pm 0.006$	$4.214 \pm 0.032 \pm 0.028$
1.6	$2.042 \pm 0.008 \pm 0.004$	$4.141 \pm 0.034 \pm 0.027$

Belle Vub Summary

