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Conference
Summary

Many references not
properly cited here.
Apologies in advance.

Far too much interesting
Material to include in 45 min.
Apologies in advance.




Physics Goals

® Discover, or help interpret, New Physics found

elsewhere using b & ¢ decays - There 1s New
Physics out there: Standard Model 1s violated
by the Baryon Asymmetry of Universe & by

Dark Matter

# Measure Standard Model parameters, the
“fundamental constants” revealed to us by
studying Weak 1nteractions

@ Understand QCD; necessary to interpret CKM
measurements.



Dark Matter

¢ 1933: Fritz Zwicky measured the motions of galaxies
in the Coma cluster

® Found velocities of 1000 km/sec relative to the cluster
center.

® This 1s greater than the escape velocity computed by
adding up the light of the cluster galaxies.

Obsgerved vs. Predicted Keplerian

Zwicky suggested that a
component of "dark
matter" adds extra
gravity to hold the
<%= |cluster together.
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The Basics: Quark Mixing

& the CKM Matrix
d . b » IMAsSs
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® A, A, p and n are 1n the Standard Model fundamental
constants of nature like G, or agy,

¢ n multiplies 1 and 1s responsible for CP violation
¢ We know A=0.22 (V ), A~0.8; constraints on p & 1



JIIIY . All of The CKM Phases

The CKM matrix can be expressed in terms of 4
phases, rather than, for example A, A, p, N:

Boarg] —ov |y —arg -l
Vcb Vcd VCb VCd

X — arg V:chb Xr _ arg Vw:dvus
V:; th Vc*d Vcs

o= —(p+y), not independent
o, B & y probably large, ¥ small ~2°, ¥" smaller




The 6 CKM Triangles

ds uc ¢ From Unitarity
VedVes VgV o
/E//\ * udVece
, - VidVis v ® “ds” - indicates
X VudVis Vuch’;
TOWS Or
columns used
sb * ct .
ViV AV ¢ There are 4
Lt VedVis/ = independent
$ VesVop 770 Voo Vih
, phases: 3, v, %,
Best measured in By decays ,
v' (o can be
od \< VenVod Vi substituted for
Y B
. « A . y or 3, as
VubVud o, VipVid VidVud ViubVub

o+B+y=m)



New Physics Tests

¢ We can use these CP violating or CP related
variables to perform tests for New Physics, or
to figure out what 1s the source of the new
physics.

® There are also important methods using Rare
Decays

¢ These tests can be either generic, where we
test for inconsistencies in SM predictions
independent of specific non-standard model, or
model specific



Generic Test: Critical

¢ Silva & Wolfenstein (hep-ph/9610208), (Aleksan, Kayser &
London), propose a test of the SM, that can reveal new physics;
it relies on measuring the angle .

¢ BTeV can use CP eigenstates to measure 7y, for example
B—Jyn, m—yy, n'—>py

¢ Can also use J/y¢, but need complicated angular analysis

@ The critical check is: » sSIfsiny

sin(P+y)
® Very sensitive since A =0.2205+0.0018
¢ Since y ~ 2°, need lots of data

sIny = A



A good place to find
new physics

1 SUSY

1 examples

dAg(B — K" u* u7)/ds

" Ali et al, hep-ph/9910221
) 1 1 1 I 1 1 1 I 1 1 1 1 1 1

4 6
s [GeV?]

@ New fermion like
objects 1n addition to t, ¢
or u, or new Gauge-like
objects

@ Inclusive Rare Decays

such as inclusive b—sy,
b—dy, b—>sl*l-

® Exclusive Rare Decays

such as B—py,
B—>K*/*/~: Dalitz plot &

polarization



MSSM Measurements from
Hinchcliff & Kersting (ep-ph/0003090)
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¢ Contributions to B, mixing B.—J/yo

b s b W S

> ) 3 %
z t,c,u t,c,u5 5 t] Xt 5 — .
-l -S—<W\<s} b

~+ —~

WH;_ (S

CP asymmetry =~ 0.1sin¢ cos¢,sin(Amgt), ~10 x SM

Contributions to direct CP violating decay
W X

Asym=(My/mg ., )°sin(¢,), ~0 in SM

10



0.7

0.6

0.5

0.4

)

excluded area has CL>0.95 [ T

0.3

0.2

0.1

0
-0.4

2|

e
CKM B=

fitter =

CKM 2005 -

11



II|IlI|

0.8

0.4

02

1
| &
=
L ]

-0:2

L

¢ Not equivalent to CKM fitter: Much smaller
input errors, e.g. V . Bayesian statistics...
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¢ Disagreement between
exclusive & inclusive

semileptonic V
determinations

New Belle Results

Inclusive Full Reconstruction (253 fb"}
mx-q2 —
m, ——
P, ——
Inclusive Endpoint (27 fb'l)
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¢ From Babar, similar
results from Belle 1n
excellent agreement

@ Error dominated by
upper limit on
B—p°p° statistically
limited, 1deal for
LHCb

1-CL

T T T | T T T | T T T | T T T | T T T | T T T T T T | T T T | T T T
. BABAR| 1
tap e =1 Combined ]
[ e o~ CKM fit
1 —
0.8 A
0.6 &
0.4k
0.2}
0 I o e s | il

Important: o via B—>pp

0 20 40 60 80 100 120 140 160

o (deg)

a =(103"0)°

180

14



m? {Geviich)

3 " '
(5 N
a5l "-:: B*—DK* _
W
i k)
L - @ -
2 . .
- .
- ]
15} -4‘ o .,
i . " 3.
| G 2
L oy *w
., .
'I!-
os "\;-\':;
0.5 I 1 2
3
25F =

Important: y from B—>D°K",
DO SK T

m 2 (GeV/ch)

Belle

15 2 L&ﬁm\ Sees

/ Clear

difference

0.5

d?In L/d%y

sensitivity

1

BABAR

preliminary

50

45

= 40

— 35

— 30

=125

— 20

15

10

5

0

15



Are Babar & Belle

compatible?
K - Babar Belle
rp= 0.118+0.079 £0.034 > rp= 0.210.08 % 0.03 = 0.04
S, = (104457 “J8)° Gp= (157+£19+11+£21)°
D*K : ry" = 0.169£0.096 505 —gors rg*= 0.12916+0.02 + 0.04
S, = (296+41 J+£15)° 5= (321 £57£11+21)°
y=(70£31 2 "Mye v = (68 4+13+11)°
stat.  syst.  Dalitz stat. syst.  Dalitz
¢ Different rg Valpes DK -
generate very different ro(KY) = 0.25017£0.09 £0.04 0,08
errors. If ry 1s fixed are S,(K*) = (353 £35 £8 +21 +49 )°
results for g compatible? 7o = (11233559 £1148)°
16




Limits on New Physics via
B, mixing

¢ Many ways to do this
¢ Liget1 Benjing 2004

®Take V ,/V and y from B—>DK" as tree level
processes not affected by new physics

¢ Take Am,=r?Am,(SM), (r, magnitude of NP)
®Take S, =sin(2P+260,), S ., =sin(2a-26,),
(04 phase of NP)

¢ Silvestrin1 — UT triangle fits

pTp-

17
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gure 8 Allowed regions in the p — o plane (top) and the fj — 2d4 plane [bottam] in the presence of new

weiesin B — B mixing. The left [right] plots are the allowed regions withaut [with] the new constraintson o,
cos 23, and 254+, The dark, medium, and light shaded areas have CL > 0.80, 0.32, and 0.05, respectively.
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UT Constraints on NP

# Generally same answer as Using:

*€, Am , sin 23
so, cos 2B & A

Ligeti, though one can
argue with the precision

® ¢y, is probably close to Cpa=1y°
Oy and NP can be large o "
wrt to SM for close to - &
equal phases . -

¢ Physics via B, mixing “

(angle y 1s unconstrained) 50"

0 I]E- I 15 2 25 3 3? )
d

19



A good place to find
new physics

1 SUSY

1 examples

dAg(B — K" u* u7)/ds

" Ali et al, hep-ph/9910221
) 1 1 1 I 1 1 1 I 1 1 1 1 1 1

4 6
s [GeV?]

@ New fermion like
objects 1n addition to t, ¢
or u, or new Gauge-like
objects

@ Inclusive Rare Decays

such as inclusive b—sy,
b—dy, b—>sl*l-

® Exclusive Rare Decays

such as B—py,
B—>K*/*/~: Dalitz plot &

polarization



Hadronic B Decays:
Phase shifts can be larg

¢ Known to be large in D decays

¢ B°—>D°n° observed by CLEO & Belle & BaBar;
construct 1sospin triangle with B>>D"n- & B-— Do,
find strong phase shift between 16.5° - 38.1°

¢ B°->D_ K" observed by Belle & BaBar at 4x10->
level, evidence for W exchange diagram? or 1s it
rescattering from D"n- ? (phase shifts & rescattering

g0 hand-in-hand) :ZS} D

¢ Final state rescattering plays a role in 1nterpreting the
fundamental CP violating angles from charmless two-
body decays 21



©® B(B—>K/l 1) =
(3.4+0.7+0.3)x107

©® BB—>K*/ 1) =
(7.8+1.8+1.2)x1077

#®Based on 229 M
BB’s

¢ Almost nothing yet

on polarization
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¢ Example: BBNS a real theory in QCD but
failed to get the right two-body branching

ratios for B—>n°n® and B—>Km (M. Beneke, G.
Buchalla, M. Neubert & C.T. Sachrajda, Nucl.Phys. B606
(2001) 245-321)

¥ Best to test a theory 1n one place and then use
it 1n another.

Thus Beware of Theory

¢ Examples

¢ Unquenched Lattice QCD. Check with f},
measurements and ratio f+/1p,

23



120 — _

& New value will be
announced at Lepton-
Photon conference 1n
Artuso’s talk. Error will
be ﬂ:16_+79 MeV

100 |

(@)

o
I

a1

...... J

2005 0 005

(o2}
o

Number of Events/0.01 GeV?2

¢ New Unquenched or
Lattice result to also ol
appear ol |
@ Thus we will have an 0 2, 0.50

interesting comparison
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Combining Semileptonics
& Leptonics

— 3 =
= o
. 2 .

| - 4 & 9 s o5
I | | I
(Ml [ |
| i | ] 3

[ 0 (R i - A
. ' | p=] i B
¥ ' 37 4
W N A ! e

¢ Decay rate:
2
dr (D — Pev) V.| B @)
dq’ 245 P 1

@ Test of models 1n D decays: predictions of
shapes of form factors (for D—>Vector {*v

there are 3 form-factors)

¢ Note that this ratio depends only on QCD:
| dr(D* — zev) . P|f (™)

[(D"—(v) dq’ -

25



New Particles

@ This teaches us about QCD & 1s also lots of fun

¢ X(3870) found in B~ —» K™ ntn~ J/y, in wtn~ J/y
mass spectrum by Belle

M, = (3871.9 + 0.5) MeV is within error equal to the D°D°* threshold
(3871.3 + 1) MeV — Speculation: X might be a molecule - like
bound state

@ - mass prefers JPC 1+

¢ Belle observes X—vy J/y (~14% of nn)/y rate)
—>C=+1

¢ They also see X—>ntnn° J/y (o below threshold)

26



CasE

Mass Peaks

6000

 m(n*n) favours high end of mass

spectrum, compatible with
intermediate p° ! n* ©- resonance
« also 35, multipole-expansion for
charmonium possible
* no charmonium candidate
at that mass
« 3§, also has JP¢ =1~ ) non-
observation by BES

X(3872) yield per20 MeV/c’
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¢ CLEO measures
v'=>yy/ Yo gy
=1.8+0.4+0.2

@ The "' 1s primarily a
13D, state, expect a 2-3X
larger rate for a 13D,
state

¢ = X(3870) isnot a 1°D,
state

Number of events/s MeV
. T T T T T T T
_._
A E—

.I....I....I...-ﬁ.*é

100 150 200 250 300
Ey (MeV)

FIG. 1: Energy of the lower ensrgy photon for the selected eTe™ — yyJ/1, J/1h — [T[™ events at
the 1/(3770) resonance. The solid line shows the fit, The dashed linss show the smosth badiground
and the expected background peaks from radiatively produced tail of the ©/(25) resonance (see the
text). The latter saturates the yez contrdbution. The excess of data over the yo peak indicated
with the dashed line represents the evidence for 1/(3770) — 7y tTansitions.
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Other new particles

150 f

100 | At
§ A

50 W
: ) ,-nwr' i

0 ], i 1‘"' I | (I I N T N N Lo
2.5 3 3.5 4 4.5
Recoil Mass(J/y) GeV/c?

Belle e'e- = J/y X

Fit yields:

_\I ( (\_ *( 2]

N o
e 471 £40  2.969 £ 0. U(l() o0
X c0 232 £ 37 3.406 = 0.007 large
n. 350 £ 17 3.626 = 0.006 HUGE
X 236 £ 71 3.937 = 0.012 5.0
I'x = 27 &£ 21 MeV; < 95MeV at 907

¢ Babar - NO PENTAQUARKS!
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¢ Not new but now much better mass

determination s600
| @ lattice QCD, Feb. 1999
5 G_CDF Run 2 Preliminary 360 pb” 1 L @ lattice QCD, Nov. 2004
z - B dly T 18.9 + 5.7 candidates ssool- T CDF, Dec. 2004 ]
e 5 10.0 £+ 1.4 evts Background R i ':' .
BT = L |
8 4 % I I
T or S 6400 - —
8 <] _ — W
- % i
N @Q:‘ | |
o[ S B I
- . I
15 H 1 L 1 6300 - H ; 3 -]
0: I | [ T N 1 PRI N T
6.2 6.25 6.3 6.35 6.4 6.45

Jiyn Mass (GeV/c?) 6200

Mass = 6287.0 + 4.8(stat.) = 1.1(syst.) MeV
Also confirmation from both CDF &D0inJ/y /v
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Technology

@ Necessary elements for a first class heavy flavor
experiment

¢ Excellent vertex detection — time resolution of ~40 fs
desired for B, physics & to reduce bkgrds

# Particle identification usually via some form of RICH
technique

¢ vy, 1° & n detection
¢ At hadron colliders — selective and efficient b triggers
¢ Efficient charged particle tracking

¢ Sufficient computing resources, include code for
alignment, monitoring, calibration & analysis

31



Trigger Comparison

¢ B factories trigger on all hadronic events

& CMS & ATLAS: Single muons above a relatively high
p, threshold & dimuons above a somewhat lower
threshold or at high luminosity plus other triggers (see
next slide)

¢ Problem: p, of the b’s peaks at ~M,

¢ LHCD: Triggers on intermediate p, hadrons, electrons or
muons then looks for evidence of a detached vertex

¢ BTeV: Looked for detached vertex in lowest trigger
level

32



ATLAS Trigger Summary

| Trigger LVLA1 LVL2 & event filter Example channels |
Di-muon 2 muons Confirm muons B,— JIP(HH)K g
pr > 6 GeV (barrel) Refit tracks in ID B.— JIY(HH)P
L @ 3 GeV (end-caps Decay vertex reconstr. N
{_,3,3 ( ps) y . B—uu B WK HH B— D
2.10 Select decays using A AD Ui A A0
(L =103%) mass/decay length cuts b W(HH) Ap—AT K
EM+u 1 muen Confirm muons & EMC B,— JIW(pU)K '+ b— eX
pr > 6 GeV Decay vertex reconstr. B — Jiy(ee)K? + b— pX
L <2.10% 1 EM cluster Refit tracks B,—K™ B_—by+b— X
E;> 2GeV Selections
Hadronic 1 muen Confirm muons & j.c. B.—D_(p(KK))m
pr > 6 GeV Decay vertex reconstr. B.—D. (p(KK)) a,(p"m)
L <2.10* 1 jet cluster Refit tracks B* — K*K*n- B, — n*m-
E;> 5GeV Selections (+ b— pX)

As luminosity drops during the fill, more triggers are turned on

33



Event Environment

#c'e” one interaction per crossing

¢ LHCb ~<1 interaction per crossing, running at
2x103%/cm?s

¢ ATLAS & CMS low luminosity (2x10%3/cm?s)
~7 int/crossing (1nitial period ~200 days giving
30 fb!)

¢ ATLAS & CMS high luminosity (10°%/cm?s)
~35 1nt/crossing — B physics a real challenge

®BTeV was ~7 it/crossing

34



sensor module

——
1cm

R

128 rows x
& | T e 22 columns
380,160 pixels 4 ——e——n T
per half-station 10 cm N |

Jout module

o

Wire bonds

/

6 cm

VO

in the full pixel detector

TPG substrate HDI flex circuit Bump bonds



Pixel Data Readout & 15t
Part.of L1 Trigger

Collision Hall Counting Room

. . |
— Pixel data combiner boards : segment tracker

Pixel I
stations :

1 Pixel

1 . . processor;
O}?tlcal links
Pixel
processor,

Pixel |3
processorR:

12 channels,

_ @2.5Gbps | . /

H S :
1542 channels @140Mbps from 1 . .

o pixel stafions (257/half-plane) syme (1bit) i : to neighboring FPGA
g T [ [ [ [ T [T [ Pixel processor segment tracker
Row (7bits) Ao ADC (3bits)
+L 1 . time stamp ordering
X
Pixel array

pixel clustering

End-of-column

Registers & DAC’s logic Xy coordinates

~

Qommand = Data output
interface — | || interface
Internal bond — ; - LVDS drivers
pads for chip ID - & 10 pads

36

FPIX2 Read-out chip



Differences due to Trigger

¢ CMS ATLAS do relatively well on B—>utu-, B—>K
utu-, & B—J/y X, but its harder for them to get
purely hadronic decays. Much 1s from the other B for
when they trigger on a single muon, from which they
also get a muon flavor tag

¢ However muon flavor tag is not that good €D?*~1% as
demonstrated by CDF & DO

@ LHCD triggers directly on all “interesting’ final states
but restricts itself to ~1 interaction per crossing

37
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¢ LHCDb has (& BTeV had) excellent kaon/pion
identification using Ring Imaging Cherenkov detection

¢ LHCD has effectively 3 systems: one for high
momentum 1in its own tank using CF, & two for lower
momentum using C,F,, gas & separately using aerogel

Differences 1in Particle ID

¢ CDF & DO have demonstrated that pid 1s necessary to get
reasonable ~5% gD?

¢ LHCD will be able to measure B, mixing quickly if CDF/D0
don’t do 1t and will also be able to measure CP violation in
B.—~DK" (v)

¢ B factories have good particle i1d as well

38



@ Uses HPD’s, basically
a phototube with a pixel
readout chip

Si pixel array
(1024 elements)

Photocathode \
(—=20kV) \

VACUUM 83 cm di

i‘tﬁ%ﬁm‘*ﬁ\ﬂ
(TIrrrrrrr =~

"I Runat—20 kV

LHCb RICH

Effective pixel size 1s
2.5x2.5 mm? at the
front glass
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¢ 120 GeV proton
beam at Fermilab

Uses MAPMTs
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Ng is 43.1 (data), 40.5 MC, excess
due to some cross-talk

Cherenkov angle resolution
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(=)

weak phase ¢s (multiplied by -1)

—

10

0 Use B —>J/\|1 ¢, take one year of data for ATLAS 30
fbl, forLHCb2ﬂ;)1

: LHCb

- ATLAS s
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» Although ATLAS gets 15x the data and 1s using a
favored dimuon mode, LHCb does better, result of a
dedicated trigger, particle identification, geometry...
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Differences 1n Physics
Reach

¢ Good to do what you .
can, but also need to
realize what needs to get
done to complete the
physics studies

]

B, ate'e

B—1v at hadron colliders

B—pp at ATLAS & CMS

Combination of LHCb & Super-B
would address all these 1ssues
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The Future

¢ Unfortunately we will lose CLEO, Babar,
CDF, & DO by ~2009

¢ LHCb, & Belle are dedicated to heavy
flavor physics and will have much to do

O ATLAS & CMS will be able to make a few
measurements better

¢ We will need these data to interpret the new
physics found directly at the LHC
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1 Thanks to the Organizers

£ Boauty 2005 -
¢ Without Giancarlo Mantovani and

Maurizio Biasini, Patrizia Cenci, Riccardo Faccini,
Orlando Panella, Attilio Santocchi, Leonello
Servoli

& There would not have been this wonderful
meeting

¢ We all thank you very much!

¢ Thanks to the speakers who after all provide
the intellectual mput! "
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