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Introduction
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�

proton-proton collisions at s = 14 TeV with bunch spacing of 25 ns

�

Luminosity:

� low-luminosity: 2·1033 cm-2 s-1 

� high-luminosity: 1034 cm-2 s-1 

�

~ 20 minimum bias events per bunch 
crossing

�

~ 5000 charged tracks per event

�

Fast response time to resolve bunch crossing

�

High precision to resolve nearby tracks

�

Reconstruction of narrow heavy objects: 
4 T field - ~1.1m Tracker radius: 1.80 mm sagitta for 100  GeV/c pT 

track!

�

Ability to tag b jets through secondary vertices: good impact parameter 
resolution
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The CMS Detector
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Calorimetric System 
(ECAL+HCAL)

13x6 m Solenoid: 4 Tesla 
Field

Muon system in return 
yoke

First muon chamber just after 
solenoid

�
 extend lever arm for 
pT measurement

14'000 Ton Detector

15
 m

22 m

Tracker System
(Pixel+Silicon Strip)
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The CMS Tracker System
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⇒ Rely on relatively few 
measurement layers 

⇒ few and precise measurement 
points per track:

�

 2 - 3 points from the 
Pixel Detector

�

10 - 14 points from 
the Silicon Strip 
Tracker

Configuration with all-silicon for the CMS Tracker System 

Pixels

Outer Barrel (TOB)Inner Barrel (TIB)
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The CMS Pixel Detector
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Active area ~ 1 m2 with 66x106 pixels  100x150 mm2 sized
⇒ 2-3 high resolution 3D measurement points 
for |η| < 2.2 Lorentz angle ~ 23o

Spatial resolution: r-φ ~10µm and r-z ~ 15 µm 

Geometry:

�

3 Barrel layers (at least 2 at the start up)
r = 4.4 cm, 7.3 cm, 10.2 cm

�

2 Pairs of Forward/Backward Disks 
(maybe 1 at the start up)
r = 6 cm-15 cm ; z = 34.5cm, 46.5cm
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The CMS Silicon Strip Detector
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Endcap (TEC): 9 disks pairs
 - r<60cm: Thin sensors
 - r>60cm: Thick sensors

Inner Disks (TID): 
3 disks pairs
- Thin sensors

Outer Barrel (TOB): 6 layers
 - Thick (500 µm) sensors
 - Long Strips

Inner Barrel (TIB): 4 layers
 - Thin (320 µm)sensors
 - Short Strips

Material Budget of the Tracker: 
significant contribution due to 
cabling, electronics and cooling

Beauty 20th-24th June 2005                                                                                           S. Cucciarelli



The CMS Tracker: Points per Track
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  Black: Total number of hits
  Green: double-sided hits
  Red: double-sided hits in thin detectors
  Blue: double sided hits in thick detectors.

2 barrel layers + 1(2) disk(s)
3 barrel layers + 1 disk
3 barrel layers + 2 disks
3 barrel layers + 3 disks

Beauty 20th-24th June 2005                                                                                           S. Cucciarelli



Track Reconstruction
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�

The Combinatorial Kalman Filter is the main algorithm used to 
reconstruct charged tracks

�

Local method: one track reconstructed at a time, starting from an initial 
trajectory.

�

Recursive procedure: track parameters estimated from a set of 
reconstructed hits

�

Takes into account the energy loss and multiple-scattering between layers

�

Integrates pattern recognition and track fitting

�

The Kalman Filter is mathematically equivalent to a global least square 
minimization (LSM), optimal when

�

model is linear

�

random noise Gaussian

�

For non-linear models or non-Gaussian noise => Adaptive Filters . 
The Kalman Filter is still the optimal linear estimator.
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Track Seeding
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� Inside-out tracking: start in the first Pixel layers, grow tracks layer by 
layer to the outer layer of the SST.

                                                    Initial trajectories (seeds) made of 
                                                    pixel hit pairs: every combination of 2      
                                                          pixel layers, compatible with the beam      
                                                          spot and a minimum pT cut.

�

The Pixel detector ensures: 3 dimensional measurement points with good 
spatial resolution. The closest to the interaction point => minimal multiple 
scattering and low occupancy. 

� Outside-in tracking: 
- Muons Reconstruction: seeds in the outer layers based on Muon-     Chamber 
seeds.
- Electrons from γ conversion: seeds in the outer layers based on ECAL clusters.

 9



Beauty 20th-24th June 2005                                                                                           S. Cucciarelli

Combinatorial Kalman Filter
The Method
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1) Trajectory Building: construction of trajectories for a given seed

�

Trajectories are extrapolated from layer to next layer, accounting for 
multiple scattering and energy loss

�

On the new layer, new trajectories are constructed, with updated 
parameters (and errors) for each compatible hit in the layer.

�

All trajectories are propagated to the next layer in parallel to avoid bias.

�

The number of trajectories to grow is limited according to their χ2 and the 
number of missing hits.

�

Only the estimate in the last layer is based on the full track candidate 
information

2) Trajectory Cleaning: hit assignment ambiguity resolution

3) Trajectory Smoothing: final fit of trajectories

�

Obtain optimal estimates at every measurement point along the track. 

�

In addition to providing tracks accurate at both ends this procedure 
provides more accurate rejection of outliers
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Combinatorial Kalman Filter
Track Reconstruction Efficiency

 11

100% eff

20% eff

Muons p
T
 1-100GeV/c Pions p

T
 1-100GeV/c

Lower reconstruction efficiency for Pions due to nuclear interactions inside 
the tracker (~20% of 1 GeV pions do not reach the outer layer).  
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Combinatorial Kalman Filter
Track Parameter Resolutions
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Muons p
T
 1-100GeV/c

σ(
p

T
)/

p
T

σ(
d

0)

Resolutions mainly dominated by the level arm (p
T
) and the spatial

resolution in pixel measurements (d
0
).
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Combinatorial Kalman Filter
Partial Reconstruction
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At the High-Level Trigger stage the same trajectory building and smoothing
are used to reconstruct tracks with a partial information from the Tracker system 

=> limit the number of hits

 PT resolution
 b-jets

 Transverse IP
  resolution b-jets

Good track parameter resolutions are obtained using  only 5-6 hits compared with 
the full track reconstruction.  
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Partial Reconstruction
An Application
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Low lumiLow lumi

Pixel Seeds

Trajectory
Building

Smoothing

>80%

<5%
<10%

Timing:  

�

 ~85% of the  track reconstruction time for trajectory building dominated
 by the search of compatible detectors.

�

Limiting the number of hits to 5 increases 
                                     speed by a factor ~1.4

                                     Btagging performance 
                                     at HLT comparable
                                     with offline reconstruction

Beauty 20th-24th June 2005                                                                                           S. Cucciarelli 14



Adaptive Filters
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Least square methods are optimal when

�

 The model is linear 

�

 Random noise is  Gaussian (measurement errors, process noise)

To better describe non-linear models (specific applications), adaptive filters 
have been implemented.

� The Gaussian Sum Filter (GSF) suitable when:

�

 Measurement errors have tails 

�

 non-Gaussian distribution of energy loss and bremsstrahlung

� The Deterministic Annealing Filter (DAF) and Multi-Track Fitting (MTF) 
   suitable when:

�

Large background noise (electronics, low pT tracks, etc) produces hit 
degradation => error on the hit assignment 

�

Not treated here
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The Gaussian-Sum Filter

   16

Motivation: Pdfs involved are usually non-Gaussian:

�

Measurement errors have Gaussian core with tails

�

Energy loss and multiple scattering (tails)

Method: the Gaussian-sum Filter (GSF): instead of single Gaussian,

 model the pdf involved by mixture of Gaussians:

� Main component of the mixture describes the core of the distribution 

� Tails are described by one or several additional Gaussians.

Application: electrons are good candidates to be reconstructed with the 
GSF

� Energy loss are dominated by bremsstrahlung

� Bethe and Heitler energy loss model is highly non-Gaussian (in the 
standard KF, distribution approximated by single Gaussian)

�

The Bethe-Heitler distribution is modeled by a mixture of Gaussians
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The Gaussian-Sum Filter
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�

The Bethe-Heitler distribution is modeled by a mixture of Gaussians

[R. Frühwirt 2003 Comput. Phys. Commun. 154 131]



The Gaussian-Sum Filter
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�

All involved distributions are Gaussian mixtures 

�

State vector is also distributed according to a mixture of Gaussians

 The GSF is a non-linear generalization of the Kalman Filter => Weighted sum of

 several Kalman Filters

� GSF is implemented as a number of Kalman filters run in parallel

� The weights of the components are calculated separately

�

Limiting number of components: if the state vector has n components and the 
measurement density (energy loss) has m components, the updated state 
vector density has mxn components (exponential explosion)

� Number of components have to be limited to a predefined number at each 
step => Cluster (collapse) components with the smallest 'distance' 
(according to a distance definition: Kullback-Leibler Distance or 
Mahalanobis Distance)

�

Output is full Gaussian mixture of state vector => Can be used in subsequent 
application (=> GSF vertex fit)
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The Gaussian-Sum Filter

   19Beauty 20th-24th June 2005                                                                                            S. Cucciarelli 19

�

Significant improvement of the core of residuals 

�

Tails only slightly reduced:
_ GSF is sensitive to outliers (increase the weight of components far from the true values) => 
it could be solved modeling the meausured positions by a Gaussian mixture (meauserement 
errors of Pixel hits are non-Gaussian. 
_ Radiation in the innermost layer cannot be evaluated => can be compensate by a vertex 
constraint.

�

Most significant improvement wrt KF for low energy electrons (~10GeV), little gain at 
100GeV.  Perfect Pattern recognition is assumed.



Vertex Reconstruction
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Reconstructed tracks are the inputs of vertex reconstruction 
Performance directly depends on the of the track reconstruction 

� A first measurement of the signal PV can be reached before the full track 
   reconstruction using the only hits in the Pixel Detector (Pixel Primary 
   Vertex Finder)

� Vertex reconstruction with full reconstructed tracks typically involves 
   the following steps:

�

 Vertex finding: given a set of tracks, individuate clusters of tracks 
compatible with the same vertex => produce vertex candidates 
    

�

 Vertex  fitting: given a set of tracks, compute the most compatible vertex 
position and use it to constrain track parameters at vertex and covariance 
matrices   
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Vertex Finding Algorithms
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Vertex finding algorithms can be classified in:

� Agglomerative algorithms:

�

 At the first iteration, vertex candidates consists of only one track

�

 Iteratively merge vertex candidates until the stopping condition 
 is satisfied

� Divisive algorithms:

�

 At the first iteration, only one vertex candidate made of the whole 
 set of tracks

�

 Iteratively split into incompatible candidates until the stopping condition 
is satisfied
                                                                                Agglomerative 
Number of vertex candidates during iterations:          
                                                                                Divisive 
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Pixel Primary Vertex Finding
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Find sets of three 
hits compatible
with a track

Evaluate 
Track Parameter

Search for 
z-component of
Primary Vertex

� No Kalman Filter is used. 

� Simple parameterization to evaluate track parameters

� First 1D measurement of the PV longitudinal coordinate (available before 
  full track reconstruction)

� It can be used regionally

Main applications: 

�

 Constraint the track seeding to the signal primary vertex

�

 Standalone pixel reconstruction used in many HLT applications 
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Pixel Primary Vertex Finding
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Transverse momentum and impact parameter resolutions for hit triplets

Degradation of high 
p

T 
 measurement due 

to the short level arm 
of the Pixel Detector.
(Full track 
reconstruction~2-3%)

~60 µm of longitudinal 
impact parameter 
resolution for p

T 
= 1-10 

GeV/c in the barrel.
(Full track 
reconstruction ~40µm) 
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�

 Two algorithms of primary vertex finding:

          An agglomerative method based on histogramming: clusterize tracks 
          close on the longitudinal impact parameter.

          A divisive method: iteratively discard tracks not compatible with the 
          vertex estimate and recover discarded tracks to make a new vertex     



Residuals (cm)
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Pixel Primary Vertex Finding

   24 24

uu100
σ~33µm

Uu100 bb100 jet50-100 tth->bb

Histo-PVtag 98 96 90 61 75 96 99

Divi-PVtag 99 99 94 78 80 100 100

eff(%)/event b
0
Jψ h->γγ h->eeµµ

PV finding efficiencies wrt to a 500µm windows around the simulated PV 

�

 The Divisive method shows general          
     better performance

�

 The signal PV is found and identified         
     with an efficiency close to 100%  in many 
     physics cases 

�

 Final states with low track multiplicity        
     need “dedicated” algorithms  

Low Luminosity Results



Primary Vertex Finding
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    bb jets 
Et = 100 GeV,|η| < 1.4

Z-residuals 
of P.V. [cm]
σ = 30 µm

Z-pulls
σ = 1.1

Find primary vertices and identify the one from the trigger event.
Inputs are fully reconstructed tracks either in the whole Tracker or inside a region 
of interest (defined around a jet, a muon,...)

Principal Vertex Finder
Divisive algorithm: - reject tracks with less than 5% compatibility to the vertex
                                 - vertex search among the discarded tracks

Efficiency to find P.V. Inside the beam spot with track purity>50%
                                     Global search: 95% no PileUp – 92% Low Lumi. 

                         Regional search inside a b-jet cone: 80%



Secondary Vertex Finding
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Principal Vertex Finder
Find secondary vertices in a jet and optimize assignment of tracks to 
primary and secondary vertices

Efficiency to find SV inside a b-jet vs. 
the 2nd largest impact parameter  
significance, for different purity 
requirements

Eff=50%

With a purity above 50%, the 
efficiency to find a SV in a b-jet 
is 48%
=> that corresponds to a b-tagging 
efficiency of ~ 50% with a mistagging 
rate of ~1% from light jets

Many others algorithms for SV finding implemented in CMS and under study!



Vertex Fitting
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Most precise estimation of the 3D vertex position and 
track parameters at vertex from a set of tracks

Discussed here:

�

 Kalman Vertex Fitter 

�

 A Least Square (LS) method, refit of the track with the vertex constraint

�

 Sensitive to outliers and non-Gaussian tails in the track parameter 
errors

�

 LS Robust Fitters
   “robustifying” LS methods with respect to outliers:

�

 Trimming Vertex Fitter

�

 Adaptive Vertex Fitter 

�

 Gaussian-Sum Vertex Fitter
  “Robustness” with respect to non-Gaussian tails of track errors



22 µm  74 µm  75 µm  

Kalman Vertex Fitter
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0.99 ± 0.010.98 ± 0.011.16 ± 0.02

Vertex position residuals and pulls in z
H → ZZ → 4µ       Bs → J/ψ ϕ         Bs → µ+µ-

     Residuals of f of tracks at vertex
Bs → J/ψ ϕ → µ+µ-K+K-

0.8 mrad  

Vertex constraint  

1.1 mrad  

z-pulls

                      z-residuals

Minimize as a function of the track reduced distance χ
i
 = (x-x

i
)/σ

i



Robust LS Vertex Fitters
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Least Trimmed sum of Square (LTS): 

�

 Discards m out of n tracks which are the least compatible with the vertex

�

 The trimming fraction m/n is an input parameter (typically 20%) 

Adaptive Vertex Fitter: 

�

 Re-weighted LS fit with soft assignment

�

 Down-weights the reduced distance of the track i 
from the vertex estimate at i-1 iteration by the 
weight function w

i 

�

 Input parameters:

� χ
c
 distance where the weight function 

drops to 0.5 (typically 4)

� T controls the sharpness of the drop

Both the algorithms are iterative: they need an initial estimate and iterate until the 
vertex position converges

wi

� 1

1

�

exp

�

� 2 � �

c
2

2 T

�



Comparison of the Fitters
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x-Pulls z-Pulls
Linear Fitter 197 6.4 167 4.3
Trimming Fitter 21 1.4 30 1.3
Adaptive Fitter 18 1.2 23 1.3

x-Res (µm) z-Res (µm)

cc jets Et=100GeV, |η|<1.4 

x-Pulls z-Pulls
Linear Fitter 39 2.1 39 1.9
Trimming Fitter 25 1.1 29 1.1
Adaptive Fitter 21 1.1 28 1.1

x-Res (µm) z-Res (µm)

qq jets Et=100GeV, |η|<1.4 

�

 Robust fitters show overall better performance on both resolution and errors. 

�

 Most significant improvement in events with more outliers (c-jets), where the    
spatial resolution of the Linear Fitter is comparable with the distance between    
primary and secondary vertices in the jet. 



Gaussian-Sum Vertex Fitter
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�

Track parameter error distribution modeled by a mixture of Gaussians

�

Iterative: the estimate of the vertex is updated with one track at the time

�

Simplified simulation: track parameters smeared with 2 Gaussian mixture

Residuals                 Pulls                          P(χ2)

Kalman Filter:
Non-Gaussian tails
P(χ2) distribution peaks
 below 0.01

GS Filter:
Better resolution
Smaller tails



Gaussian-Sum Vertex Fitter
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The Gaussian Sum Vertex Filter can be combined with the Adaptive Vertex Filter
=> Adaptive-GSF: adaptive vertex filter which uses the GSF as updator 

    Able to both down-weight outliers and use the full mixture of tracks
Robustness tests have been performed with a simplified simulation

Filter Pull
Kalman 0.32 71 1.39

GSF 0.48 54 0.99
Adaptive 0.3 59 1.08
A-GSF 0.44 54 0.93

mean P(χ2) Res (µm)
 Vertices without outliers 

Filter Pull
Kalman 0.18 115 1.61

GSF 0.37 83 1.11
Adaptive 0.18 92 1.34
A-GSF 0.24 84 1

mean P(χ2) Res (µm)
 Vertices with 1 outlier (mismeausured track) 



Conclusions
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�

CMS has a very robust and versatile tracker and track reconstruction algorithms, 
able to operate in a very challenging environment

�

Combinatorial Kalman filter shown to give very good results even in difficult 
environments:

�

high efficiency, low fake rate

�

Good track parameter resolutions after using only the first five to six hits => 
usable at HLT stage

�

More sophisticated methods available for specific applications (e.g. GSF): adaptive 
algorithms show improvements w.r.t. LSM in difficult situations 

�

Vertex reconstruction: several algorithms have been presented providing both a 
good efficiency on identifying vertex candidates and high precision on evaluating 
the best estimate of the position

�

Adaptive algorithms are available and they are shown to be more stable w.r.t. 
Outliers and non-Gaussian tails of track errors (robustification of LSM, Gaussian 
Sum Vertex Fitter) 


