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@ Introduction

il

® [ uminosity:
- low-luminosity: 2:10* cm? st
- high-luminosity: 10%* cm= s
»~ 20 minimum bias events per bunch
crossing

»~ 5000 charged tracks per event
=>» Fast response time to resolve bunch crossing
=>»High precision to resolve nearby tracks

® Reconstruction of narrow heavy objects:
4 T field - ~1.1m Tracker radius: 1.80 mm sagitta for 100 GeV/c p,

track!

® Ability to tag b jets through secondary vertices: good impact parameter
resolution
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) The CMS Detector
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@ The CMS Tracker System

Configuration with all-silicon for the CMS Tracker System

= Rely on relatively few
measurement layers
AN
‘ — few and precise measurement
Hil,  points per track:

® 2 - 3 points from the
Pixel Detector

; ®10 - 14 points from
S the Silicon Strip
o

o, Tracker
Inner Barrel (TIB)

Outer Barrel (TOB)
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r=44cm, 7.3cm, 10.2 cm

® 2 Pairs of Forward/Backward Disks
(maybe 1 at the start up)

r=6cm-15cm; z=34.5cm, 46.5cm

Active area ~ 1 m* with 66x10° pixels 100x150 mm? sized
= 2-3 high resolution 3D measurement points
for In| < 2.2 Lorentz angle ~ 23°

Spatial resolution: r-¢ ~10um and r-z ~ 15 um
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@ The CMS Silicon Strip Detector

il

Outer Barrel (TOB): 6 layers Endcap (TEC): 9 disks pairs
- r<60cm: Thin sensors

- Thick (500 um) sensors L
- Long Strips - r>60cm: Thick sensors 4 All Tracker
ol 0.2 od 035 06 0.7 [LE] L5 1.2 .B(".I[‘Il Fipi‘
18 M Sensitive
[ ]S /z;; ////j;/ Pt
ii: /,-f 15 ! ::_upp:un
Sl B oy,
: LD L = s B
B 22
m T e == -
=t I N1 1 N W O =
T — LN N e
10 I__..—-'_““_ > 0.2
a -
Y 0.5 I 1.5 ? 2.5
Inner Barrel (TIB): 4 | Inner Disks (TID): - | Budget of the Tracker:
nner Barrel (TIB): 4 layers 3 disks pairs aterial Budget of the Tracker:

- Thin (320 pm)sensors - Thin sensors significant contribution due to
- Short Strips cabling, electronics and cooling
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\

2 Hit Efficiency

3 Hit Efficiency

2 barrel layers + 1(2) disk(s) "™
3 barrel layers + 1 disk

3 barrel layers + 2 disks

3 barrel layers + 3 disks

The CMS Tracker: Points per Track

2 and 3 hit pixel efficiency

N points

18

layout

p—
(=}
L] l T

Black: Total number of hits

Green: double-sided hits

Red: double-sided hits in thin detectors
Blue: double sided hits in thick detectors.
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@ Track Reconstruction

il

® The Combinatorial Kalman Filter is the main algorithm used to
reconstruct charged tracks

> Local method: one track reconstructed at a time, starting from an initial
trajectory.

> Recursive procedure: track parameters estimated from a set of
reconstructed hits

> Takes into account the energy loss and multiple-scattering between layers
> Integrates pattern recognition and track fitting
® The Kalman Filter is mathematically equivalent to a global least square
minimization (LSM), optimal when
> model is linear

> random noise Gaussian

® For non-linear models or non-Gaussian noise => Adaptive Filters .
The Kalman Filter is still the optimal linear estimator.
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@ Track Seeding

® Inside-out tracking: start in the first Pixel layers, grow tracks layer by
layer to the outer layer of the SST.

Minimal pT tracks

kL Initial trajectories (seeds) made of
S i pixel hit pairs: every combination of 2
pixel layers, compatible with the beam
spot and a minimum p_ cut.

Beam spot

® The Pixel detector ensures: 3 dimensional measurement points with good
spatial resolution. The closest to the interaction point => minimal multiple

scattering and low occupancy.
® OQutside-in tracking:
- Muons Reconstruction: seeds in the outer layers based on Muon- Chamber

seeds.
- Electrons from y conversion: seeds in the outer layers based on ECAL clusters.
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@ Combinatorial Kalman Filter
~ The Method

Trajectory Building: construction of trajectories for a given seed

® Trajectories are extrapolated from layer to next layer, accounting for
multiple scattering and energy loss

® On the new layer, new trajectories are constructed, with updated
parameters (and errors) for each compatible hit in the layer.

® All trajectories are propagated to the next layer in parallel to avoid bias.

® The number of trajectories to grow is limited according to their x? and the
number of missing hits.

® Only the estimate in the last layer is based on the full track candidate
information

2) Trajectory Cleaning: hit assignment ambiguity resolution
3) Trajectory Smoothing: final fit of trajectories

® Obtain optimal estimates at every measurement point along the track.

® |n addition to providing tracks accurate at both ends this procedure
provides more accurate rejection of outliers
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o Combinatorial Kalman Filter
—\ Track Reconstruction Efficiency

Muons p_1-100GeV/c Pions p_1-100GeVi/c
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Lower reconstruction efficiency for Pions due to nuclear interactions inside
the tracker (~20% of 1 GeV pions do not reach the outer layer).

0
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@ Combinatorial Kalman Filter

Track Parameter Resolutions

Muons p_1-100GeVi/c

8

® u.p.=100GeVic

5(dy) (um)

8

A W p.=10GeV/c
W pr=1GeVic

o(p.)/p;
.

¢
o(d,)
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1.25 1.5 175 2 2.25

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 225 2.5
n

Resolutions mainly dominated by the level arm (p_) and the spatial
resolution in pixel measurements (d ).
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@ Combinatorial Kalman Filter

— Partial Reconstruction

At the High-Level Trigger stage the same trajectory building and smoothing
are used to reconstruct tracks with a partial information from the Tracker system
=> limit the number of hits

o 5<plGeV/cl<10 %o 5<plGeV/cl<10
E b
QT 0O 2 pi hi _qéo 70 O Z pixe! hits
8 08 °
é ® 5 pixel hits © ® 5 pixel hits
b o ¥ ¢ PP & T 60 ] Z s - &
0.6 & 2+3 pixel hits % & 2+3 pixel hits
PT resolution - : Transverse IP
0.4 . . .
b-jets ” 3 resolution b-jets
o}
| $ 5 Q
0.2 s, 2 g %3
e’ 2 4 6 8 10 12 : o 2 4 6 8 10 12
Reconstructed Hi Reconstructed Hits

Good trackparameter resolutions are obtained using only 5-6 hits compared with
the full track'reconstruction.
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o Partial Reconstruction

ard

Timing:

An Application

® ~85% of the track reconstruction time for trajectory building dominated

by the search of compatible detectors.

—y

O Pixel Seeds g . 5_5
" gy 3 09} i b
® Smoothing "g ﬂ_gf High Luminosity -
- "
%D'?E iy ;; :
® Limiting the number of hits to 5 increases 0.5F O S .P. 2D
jets E,=100 Ge = =Jiay Z E £
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0.1 .
L | 6 g8 9 10
No. of hits
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Adaptive Filters

Least square methods are optimal when

® The model is linear
® Random noise is Gaussian (measurement errors, process noise)

To better describe non-linear models (specific applications), adaptive filters
have been implemented.

= The Gaussian Sum Filter (GSF) suitable when:
2 Measurement errors have tails
= non-Gaussian distribution of energy loss and bremsstrahlung

= The Deterministic Annealing Filter (DAF) and Multi-Track Fitting (MTF)

suitable when:
2| arge background noise (electronics, low pT tracks, etc) produces hit
degradation => error on the hit assignment
>Not treated here
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The Gaussian-Sum Filter

Motivation: Pdfs involved are usually non-Gaussian:
® Measurement errors have Gaussian core with tails
® Energy loss and multiple scattering (tails)

Method: the Gaussian-sum Filter (GSF): instead of single Gaussian,

model the pdf involved by mixture of Gaussians:
= Main component of the mixture describes the core of the distribution
= Tails are described by one or several additional Gaussians.

Application: electrons are good candidates to be reconstructed with the
GSF

= Energy loss are dominated by bremsstrahlung

= Bethe and Heitler energy loss model is highly non-Gaussian (in the
standard KF, distribution approximated by single Gaussian)

=» The Bethe-Heitler distribution is modeled by a mixture of Gaussians
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/) The Gaussian-Sum Filter

=» The Bethe-Heitler distribution is modeled by a mixture of Gaussians

X/XOZE%, 6 components }G’XDZE%, 6 components
10
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[R. Frihwirt 2003 Comput. Phys. Commun. 154 131]

Beauty 20™-24™ June 2005 17 S. Cucciarelli



The Gaussian-Sum Filter

® All involved distributions are Gaussian mixtures

® State vector is also distributed according to a mixture of Gaussians

The GSF is a non-linear generalization of the Kalman Filter => Weighted sum of
several Kalman Filters
= GSF is implemented as a number of Kalman filters run in parallel

= The weights of the components are calculated separately

® Limiting number of components: if the state vector has n components and the
measurement density (energy loss) has m components, the updated state
vector density has mxn components (exponential explosion)

= Number of components have to be limited to a predefined number at each
step => Cluster (collapse) components with the smallest 'distance’
(according to a distance definition: Kullback-Leibler Distance or
Mahalanobis Distance)

® Qutput is full Gaussian mixture of state vector => Can be used in subsequent
application (=> GSF vertex fit)
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@ The Gaussian-Sum Filter

e r 3 £ N - c
S a00f- Residuals <1600 Pull quantities £00451
7] = . . 7] B == o
~ [ Full simulation X H - . GSF 2 0.04
§ 350/ P, =10Gevic GSF 8 1400 [ E‘u':' ke Mean: 0.12 F -
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=» Significant improvement of the core of residuals

=» Tails only slightly reduced:
_ GSF is sensitive to outliers (increase the weight of components far from the true values) =>
it could be solved modeling the meausured positions by a Gaussian mixture (meauserement
errors of Pixel hits are non-Gaussian.
__Radiation in the innermost layer cannot be evaluated => can be compensate by a vertex
constraint.

=» Most significant improvement wrt KF for low energy electrons (-10GeV), little gain at
100GeV. Perfect Pattern recognition is assumed.
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Vertex Reconstruction

Reconstructed tracks are the inputs of vertex reconstruction
Performance directly depends on the of the track reconstruction

m A first measurement of the signal PV can be reached before the full track
reconstruction using the only hits in the Pixel Detector (Pixel Primary
Vertex Finder)

m Vertex reconstruction with full reconstructed tracks typically involves
the following steps:

¢ Vertex finding: given a set of tracks, individuate clusters of tracks
compatible with the same vertex => produce vertex candidates

¢ Vertex fitting: given a set of tracks, compute the most compatible vertex
position and use it to constrain track parameters at vertex and covariance
matrices
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Vertex Finding Algorithms

Vertex finding algorithms can be classified in:

m Agglomerative algorithms:
¢ At the first iteration, vertex candidates consists of only one track
¢ lteratively merge vertex candidates until the stopping condition
Is satisfied

m Divisive algorithms:
¢ At the first iteration, only one vertex candidate made of the whole
set of tracks
¢ [teratively split into incompatible candidates until the stopping condition
IS satisfied

Agglomerative U,
Number of vertex candidates during iterations:
Divisive ﬂ
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Pixel Primary Vertex Finding

Find sets of three Search for
. . Evaluate

hits compatible z-component of
. Track Parameter .

with a track Primary Vertex

= No Kalman Filter is used.
= Simple parameterization to evaluate track parameters

= First 1D measurement of the PV longitudinal coordinate (available before
full track reconstruction)

= |t can be used regionally

Main applications:
=» Constraint the track seeding to the signal primary vertex
=» Standalone pixel reconstruction used in many HLT applications
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Pixel Primary Vertex Finding

Transverse momentum and impact parameter resolutions for hit triplets

~ 600

& 0.5 g_
£045 ®p. 1GeVic L ® § GeViams
® n Wp 10GeVie 3 | ®10GeVicp,
' 400 A 100 GeV/c py
0.35 o . .
03 = Degradation of high wol ~60 um of longitudinal
025/ mwgm  m p, measurement due , ° impact parameter
n N .
200 =1-
02 to the short level arm N . resolution for p_= 1-10
. (] .
e . | of the Pixel Detector. 100 = o ° .= . | GeVicinthe barrel.
0.1 [ A | I A
Y L (Full track inin (Full track
0T w8 1 13 7 25 - 0 0% 05 1 15 2 25 -
Pseudorapidity  €CONStruction~2-3%) pseudorapidity  F€CoONstruction ~40um)

® Two algorithms of primary vertex finding:

An agglomerative method based on histogramming: clusterize tracks
close on the longitudinal impact parameter.

A divisive method.: iteratively discard tracks not compatible with the
vertex estimate and recover discarded tracks to make a new vertex
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/) Pixel Primary Vertex Finding

PV finding efficiencies wrt to a 500um windows around the simulated PV

eff(%)/event Uul00 | bb100 |jet50-100 | bJdy | h->yy | h->eeuu | tth->bb

Histo-PVtag 08 96 90 61 75 96 99
Divi-PVtag 99 99 94 78 80 100 100
Low Luminosity Results | T e
— 120 i Constant 1126+ 48
=» The Divisive method shows general : SBar it s
better performance 803
=» The signal PV is found and identified 60 v
with an efficiency close to 100% in many 4ot | k
physics cases , LL\{“
20 .
=» Final states with low track multiplicity -8.555.546_1656.1656.5‘1”6*'6.01613:36‘.856.346(0
need “dedicated” algorithms Residuals (cm)
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Primary Vertex Finding

Find primary vertices and identify the one from the trigger event.
Inputs are fully reconstructed tracks either in the whole Tracker or inside a region
of interest (defined around a jet, a muon,...)

Principal Vertex Finder
Divisive algorithm: - reject tracks with less than 5% compatibility to the vertex
- vertex search among the discarded tracks

Efficiency to find P.V. Inside the beam spot with track purity>50%
bb jets Global search: 95% no PileUp — 92% Low Lumi.
Et =100 GeV,ln|<14 Regional search inside a b-jet cone: 80%

Corstam ZFSLE AT
He=an oozZist ooisd
Sigma 1104 +oois

Humbser ot primary verex
I

Maon_walua 596TE 05158
Sigma AL £A5

Humbar of primary warex /4 pm

Pulz on Z axis

Residual of primary werex on 2 axis, in prm
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Secondary Vertex Finding

Principal Vertex Finder
Find secondary vertices in a jet and optimize assignment of tracks to
primary and secondary vertices

S SEEC IS BPSIEE

. BPSdhes L1
: 1 --ﬁrri:il‘--":?'"i i i _<i:.__ Ll
- & _b._i ': ! | :r i_{}_ _ah =
: s Al LR B g -

— 0 - -
FEff 5.O|/|‘L+Jr e aglhans|

2 T Eg T
With a purity above 50%, the - “"“ ++ T
efficiency to find a SV in a b-jet 8 b +
IS 48% az b

- + e Purity .55

=> that corresponds to a b-tagging o + o Purity 0.39

efficiency of ~ 50% with a mistagging :
rate of ~1% from light jets ‘a4 s 8 10 B H OB M »
2md lurgest 0/G(d0)

Many others algorithms for SV finding implemented in CMS and under study!
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Vertex Fitting

Most precise estimation of the 3D vertex position and
track parameters at vertex from a set of tracks

Discussed here:

® Kalman Vertex Fitter
¢ A Least Square (LS) method, refit of the track with the vertex constraint
¢ Sensitive to outliers and non-Gaussian tails in the track parameter
errors
® S Robust Fitters
“robustifying” LS methods with respect to outliers:
¢ Trimming Vertex Fitter
¢ Adaptive Vertex Fitter
® Gaussian-Sum Vertex Fitter
“Robustness” with respect to non-Gaussian tails of track errors
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Kalman Vertex Fitter

Minimize as a function of the track reduced distance y. = (x-x)/c.

Vertex position residuals and pulls in z Residuals of f of tracks at vertex
H— ZZ — 4u B. > Jyo B, - uw B, > J/y ¢ - uuwKK
z-residuals
22 75 74 ‘f’ Feconstructed
- Hm t Hm i u Bl i 1 — — 4-!::::
| | =t 11mrad

150

1{HN

S0

1]
00X L LAELL Lk LLAKH 002 EYEE

z-pulls & Refitted Vertex constraint
=} 0.8 mrad =

003 02 ILLKl] LU {ELLAD] (0012 {003
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Robust LS Vertex Fitters

Least Trimmed sum of Square (LTS):
¢ Discards m out of n tracks which are the least compatible with the vertex
¢ The trimming fraction m/nis an input parameter (typically 20%)

Adaptive Vertex Fitter: w,= 1
¢ Re-weighted LS fit with soft assignment 1+ ex X*—X:
¢ Down-weights the reduced distance of the track / P 2T

from the vertex estimate at /-7 iteration by the weightnctionw 7 |

weight function w. e
¢ Input parameters: °-'_- Tato
+ X distance where the weight function osf-
drops to 0.5 (typically 4) oaf-
¢ [ controls the sharpness of the drop

Lk 1 L B e
(1] 2 4 6 a 10 12 14 186 18

Both the algorithms are iterative: they need an initial estimate and iterate until the
vertex position converges
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/) Comparison of the Fitters
qq jets Et=100GeV, |n|<1.4
X-Res (um) x-Pulls z-Res (um) z-Pulls
Linear Fitter 39 2.1 39 1.9
Trimming Fitter 25 1.1 29 1.1
Adaptive Fitter 21 1.1 28 1.1

cc jets Et=100GeV, |n|<1.4

X-Res (um) x-Pulls  z-Res (um) z-Pulls
Linear Fitter 197 6.4 167 4.3
Trimming Fitter 21 1.4 30 1.3
Adaptive Fitter 18 1.2 23 1.3

=» Robust fitters show overall better performance on both resolution and errors.

=» Most significant improvement in events with more outliers (c-jets), where the
spatial resolution of the Linear Fitter is comparable with the distance between
primary and secondary vertices in the jet.
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Gaussian-Sum Vertex Fitter

=» Track parameter error distribution modeled by a mixture of Gaussians
=> [terative: the estimate of the vertex is updated with one track at the time
=>» Simplified simulation: track parameters smeared with 2 Gaussian mixture

Residuals Pulls P(x?)
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/) Gaussian-Sum Vertex Fitter

The Gaussian Sum Vertex Filter can be combined with the Adaptive Vertex Filter
=> Adaptive-GSF: adaptive vertex filter which uses the GSF as updator
Able to both down-weight outliers and use the full mixture of tracks
Robustness tests have been performed with a simplified simulation

Vertices without outliers

Filter mean P(x?) | Res (um) Pull
Kalman 0.32 71 1.39
GSF 0.48 54 0.99
Adaptive 0.3 59 1.08
A-GSF 0.44 54 0.93

Vertices with 1 outlier (mismeausured track)

Filter mean P(x?) | Res (um) Pull
Kalman 0.18 115 1.61
GSF 0.37 83 1.11
Adaptive 0.18 92 1.34
A-GSF 0.24 84 1
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Conclusions

® CMS has a very robust and versatile tracker and track reconstruction algorithms,
able to operate in a very challenging environment

® Combinatorial Kalman filter shown to give very good results even in difficult
environments:

high efficiency, low fake rate

Good track parameter resolutions after using only the first five to six hits =>
usable at HLT stage

® More sophisticated methods available for specific applications (e.g. GSF): adaptive
algorithms show improvements w.r.t. LSM in difficult situations

® Vertex reconstruction: several algorithms have been presented providing both a
good efficiency on identifying vertex candidates and high precision on evaluating
the best estimate of the position

® Adaptive algorithms are available and they are shown to be more stable w.r.t.
Outliers and non-Gaussian tails of track errors (robustification of LSM, Gaussian
Sum Vertex Fitter)
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