Searching for New Physics at the B factories: Measurements of sin2 β at BaBar

Gabriella Sciolla Massachusetts Institute of Technology

Representing the BaBar Collaboration

Beauty 2005 - Assisi, June 20-24, 2005

BaBar and PEP-II

- BaBar detector
 - 4π collider detector
- PEP-II asymmetric B factory
 - 9.0 GeV e⁻ beam
 - 3.1 GeV e⁺ beam
 - Peak luminosity
 - 9.1 x 10³³ cm⁻²s⁻¹
- Integrated luminosity
 - Delivered: >268 fb⁻¹

Most results in this talk are based on 227 M BB events

The Beauty of the Unitarity Triangle

Two ways of looking for New Physics:

- Compare measurement of sides and angles
- Measure angles in channels with different sensitivity to New Physics

G. Sciolla – M.I.T.

The three roads to β

- Charmonium modes:
 - $J/\psi K_S$, $\psi(2S)K_S$, $\chi_{c1}K_S$, $\eta_c K_S$
 - J/ψK_L
 - $J/\psi K^{*0} (K^{*0} \to K_S \pi^0)$
- Open-charm modes:
 - *D**+ *D**-, *D**+ *D*-, *D*+ *D*-
- Penguin-dominated modes:
 - φK^0 , $K^+K^-K_S$, $K_SK_SK_S$
 - η'K_S
 - $K_{S}\pi^{0}, \, \omega K_{S}, \, f_{0}(980) K_{S}$

G. Sciolla – M.I.T.

CP violation in interference between mixing and decays

• Example: $B^0 \rightarrow J/\Psi K_S$:

$$\lambda = \eta_f \left(\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \right)_{B_{mix}^0} \left(\frac{V_{cs}^* V_{cb}}{V_{cs} V_{cb}^*} \right)_{decay} \left(\frac{V_{cd}^* V_{cs}}{V_{cd} V_{cs}^*} \right)_{K_{mix}^0} = -e^{-i2\beta}$$

 $A_{CP}(t) = -\eta_f \sin 2\beta \sin(\Delta m t)$

G. Sciolla – M.I.T.

How to measure the CP asymmetry

The golden mode for sin2 β : B⁰ → charmonium K⁰

- Theoretically clean
- Experimentally clean
- Relatively large BF (~10⁻⁴)

CP sample:

The golden mode for sin2β: CP fit in B→ charmonium K⁰

Unbinned maximum likelihood fit to Δt distribution

SM test in $B^0 \rightarrow$ charmonium K^0

Measurements of angles NOT included in fit

εκ

2

The $b \rightarrow ccd$ trees:

$B^0 \rightarrow open charm$

- Tree measures $\sin 2\beta$ from b $\rightarrow c\bar{c}d$ transitions
- Penguin expected to be small in SM (< few %)

New Physics could have large effects

• D*D*: as large as $\Delta\beta$ = 0.6 [Grossman and Worah, 1997]

G. Sciolla – M.I.T.

New

The open charm trees:

Recent update: $B^0 \rightarrow D^{*+}D^{*-}$

G. Sciolla – M.I.T.

The open charm trees:

$B^0 \rightarrow D^{(*)\pm} D^{\pm}$

G. Sciolla – M.I.T.

The key to New Physics: The Penguin Modes

Decays dominated by gluonic penguin diagrams
 The typical example: B⁰→ φK_S

- No tree level contributions
- In SM, top quark dominates the loop: $C \sim 0$; $S \sim sin 2\beta$
- Impact of New Physics could be significant
 - New particles could participate in the loop \rightarrow new CPV phases
- Low branching fractions
 - Measure A_{CP} in as many $b \rightarrow sq\overline{q}$ penguins as possible!
 - φK^0 , $K^+ K^- K_S$, $\eta' K_S$, $K_S \pi^0$, $K_S K_S K_S$, ωK_S , $f_0(980) K_S$

G. Sciolla – M.I.T.

The golden penguin: $B^0 \rightarrow \phi K^0$

Related channel: $B^0 \rightarrow K^+K^-K_S$

- For non resonant $B^0 \rightarrow K^+K^-K_s$ decays, $\eta_{CP} = 2 f_{even} 1$
- f_{even} measured from angular moment analysis of the K⁺K⁻ system

$$f_{even} = \frac{A_S^2}{A_S^2 + A_P^2} = 0.89 \pm 0.08 \pm 0.06$$

A new golden penguin: $B^0 \rightarrow K_S K_S K_S$

- Theoretically clean
 - Penguin dominated CP=+1 eigenstate
- Experimentally challenging
 - B decay vertex uses K_s pseudo-particles and beam spot constraint

The silver penguin: $B^0 \rightarrow \eta' K_S$

hep-ex/0503011 hep-ex/0408095 hep-ex/0503018

The challenging penguins: $B^0 \rightarrow \pi^0 K_S, f_0 K_S, \omega K_S$

- $B^0 \rightarrow \pi^0 K_s$:
 - dominated by $b \rightarrow sd\overline{d}$
 - $b \rightarrow su\overline{u}$ tree contribution are non negligible ($\Delta S \sim 0.1 0.2$)
 - Experimental challenge: B_{CP} decay vertex reconstruction ($\sigma_{\Delta t} \sim 1 ps$)
- $B^0 \rightarrow f_0 K_s$:
 - In SM dominated by $b \rightarrow ss\overline{s}$
- B⁰→ωK_S:
 - In SM dominated by $b \rightarrow sdd$
 - But tree can be relatively large

	$B^0 \rightarrow \pi^0 K_s$	$B^0 \rightarrow f_0 K_S$	B ⁰ →ωK _S
-η _f S	$0.35^{+0.30}_{-0.33} \pm 0.04$	$+0.95 \begin{array}{c} ^{+0.23}_{-0.32} \pm 0.10 \end{array}$	$+0.50 \begin{array}{c} ^{+0.34}_{-0.38} \ \pm \ 0.02 \end{array}$
С	$0.06 \pm 0.18 \pm 0.03$	-0.24 ± 0.31 ± 0.15	-0.56 $^{+0.29}_{-0.27} \pm 0.03$

G. Sciolla – M.I.T.

"sin2 β " in penguins: BaBar only

- Although each measurement is compatible with J/ΨK_s, a trend is visible
- η'K_s has the most significant shift (~2.9 σ if theory uncertainties neglected)
- ... but statistical errors are still large...

"sin2β" in penguins: BaBar + Belle

Summary and Conclusion

- Precision measurements of sin2β in many different channels are a powerful probe for New Physics
 - $B^0 \rightarrow$ charmonium K⁰: our calibration point ($\sigma_{sin2\beta} \sim 0.04$)
 - $B^0 \rightarrow$ open charm: no smoking guns so far
 - $B^0 \rightarrow$ penguin modes: intriguing shifts observed
- New Physics or statistical fluctuations?
 - Time and data will tell...
- Goals for BaBar luminosity
 - Summer 2006: 500 fb⁻¹
 - Summer 2008: 1 ab⁻¹

Backup slides ------

Transversity analysis

- D*+D*- is not a CP eigenstate
 - sum of L=0, 2 (CP even) and L=1 (CP odd)
- CP odd fraction $R_{\!\perp}$ determined by transversity analysis

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{tr}} = \frac{3}{4} (1 - R_{\perp}) \sin^2\theta_{tr} + \frac{3}{2}R_{\perp} \cos^2\theta_{tr}$$

$$R_{\perp} = \frac{|A_{\perp}|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

$$R_{\perp} = \frac{|A_{\perp}|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

$$R_{\perp} = \frac{|A_{\perp}|^2}{|A_0|^2 + |A_{\parallel}|^2}$$

35

30 25

> 15 10

> > -0.6

-0.2

BABAR

0.8

cos(θ...)

0.6

0.2

0.4

D*D analysis

- SM expectations
 - D+D-
 - C = 0
 - $S = -\sin 2\beta$
 - D*D

•
$$C_{D^*+D^-} = -C_{D^*-D^+}$$

• $S_{D^*+D^-} = -X \sin(2\beta + \delta)$ and $S_{D^*-D^+} = -X \sin(2\beta - \delta)$
with:

- $X = \sqrt{1 C_{D^* D^+}^2}$
- δ =difference of strong phases for $B^0 \to D^{*+}D^-$ and $B^0 \to D^{*-}D^+$

G. Sciolla – M.I.T. Measurements of $sin(2\beta)$ at BaBar

cos and sin fits in penguin modes

The challenging penguins: $B^0 \rightarrow \pi^0 K_S$

- In SM these decays are dominated by $b \rightarrow sd\overline{d}$
 - $b \rightarrow su\overline{u}$ tree contribution are non negligible
 - $\Delta S \sim 0.1$ in model dependent QCD calculations
 - ΔS ~ 0.2 in SU(3)
- Experimentally challenging
 - B_{CP} decay vtx from K_S and beam spot
 - K_s tracks with > 3 SVT: $\sigma_{\Delta t} \sim 1$ ps

N_{sig} = 300 ± 23

Unbinned max likelihood fit:

$$S_{\kappa_{s}\pi^{0}} = +0.35^{+0.30}_{-0.33} \pm 0.04$$
$$C_{\kappa_{s}\pi^{0}} = +0.06 \pm 0.18 \pm 0.03$$

hep-ex/0408095 hep-ex/0503018

Two more penguins:

 $B^0 \rightarrow f_0 K_S$ and $B^0 \rightarrow \omega K_S$

$B^0 \rightarrow \omega K_S$: dominated by $b \rightarrow sdd$

Tree contamination can be relatively large

The Other Trees:

Recent update: $B \rightarrow D^{*+}D^{*-}$

- Vector-vector final state:
 - CP-even and CP-odd admixture
- Transversity analysis measures f_{odd}

• $f_{odd} = (12.5 \pm 4.4 \pm 0.7)\%$

→ Good agreement with SM

Penguins vs tree

G. Sciolla – M.I.T.

Measurements of Sunzpl at Dapar