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Zeta(s) can be written in three different “languages”

Sum over the integers (Euler)

Product over primes (Euler)
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Product over the zeros (Riemann)
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The Riemann zeros and the prime numbers are dual objects

The RH imposes a bound to the chaotic behaviour of prime numbers

If RH is true then “there is music in the primes”
                                                              (M. Berry)



• In 1999 Berry and Keating proposed that the 1D
Hamiltonian  H = x p could be related to the non
trivial zeros of the Riemann zeta function.

• A quantization of xp may contain the Riemann
zeros in the spectrum.

• This result would imply a proof of the Riemann
hypothesis.

• The Berry-Keating proposal was parallel to
Connes adelic approach where the Riemann
zeros appear as missing spectral lines



Outline of the talk
• Polya and Hilbert conjecture and support
• H= xp: semiclassical approaches
• A self-adjoint extension of H = xp
• Russian doll BCS model of superconductivity
• H = xp + interactions: general theory
• Application to the Riemann zeros

Based on:
“The cyclic renormalization group and the Riemann zeros”, 
JSTAT (math.NT/0510572)  

“H=xp with interaction and the Riemann zeros”, 
NPB (math-phys/0702034)



The non trivial zeros of the zeta function are of the form
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where E is an eigenvalue of a selfadjoint operator H
and therefore a real number.

Montgomery-Odlyzko law: The zeros obey locally the 
Gaussian Unitary Ensemble (GUE) statistics 
which suggests that H breaks the time reversal symmetry.

Berry´s quantum chaos proposal: There is a classical chaotic 
system with isolated periodic orbits labelled by the prime numbers, 
which upon quantization yields the Riemann zeros in its spectrum.



Classically  H =   x p  gives the trayectories
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Time Reversal Symmetry is broken (                         )
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Berry-Keating regularization
Planck cell in phase space:
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x > lx, p > lp, h = lx lp = 2", (h =1)

Number of semiclassical states

Agrees with number of zeros asymptotically (smooth part)



Connes regularization
              Cutoffs in phase space:
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Number of semiclassical states

As                    spectrum = continuum - zeros 
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Spectral interpretation of the zeros:
Absortion (Connes) or emission (Berry-Keating)?



A mixed regularization
 Cutoffs in x space:
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Number of semiclassical states

There is a continuum of states as in Connes with
no trace of the zeros unlike in Berry-Keating!!



Define the normal ordered operator
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The formal eigenfunctions are
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H admits a self-adjoint extension in the
region 1 < x < N if
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Which agrees with the semiclassical result
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For                  the spectrum is symmetric around zero
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The RD-BCS Hamiltonian (Leclair, Roman, GS, 2002)
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"(x)= Energy levels, g = BCS coupling, h = T-breaking coupling

For                 the eigenenergies and wave functions are 
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Map: BCS model and the H = xp model
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The many body model is exactly solvable (Dunning, Links)



The inverse Hamiltonian 1/xp
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1/p is a 1D Green function, then

! 

H
"1
(x,x#) =

i

2

sign(x " x#)

x x#

The Schroedinger equation is
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Define the antisymmetric matrix 

a(x) and b(x) are real “potentials”.
H(x,x´) is defined as the inverse of this matrix.
The interaction is a “proyector” into the  states
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Type I: b(x)=1 and         is a square normalizable function.

Type II:                 are square normalizable functions

The model is exactly solvable for generic potentials
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Exact solution
The eigenenergies E are given by the solutions of
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F(E) plays the role of a Jost function

Spectrum in the limit
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• If                scattering state (delocalized)
• If                bound state (localized)
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The bound states (if any) are embbeded in the continuum!!

Similar to the von Neumann-Wigner potential (1 bound state with positive energy)



Eigenfunctions
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A,B,C are integration constants which depend on E
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C = F(E)

at large distances              is dominated by C term which
vanishes when F(E ) =0 and the state becomes localized
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Localization is due to an interference effect and it is
very sensitive to the form of the potential. 



The Jost funtion F( E)

F( E) is analytic in the complex upper half plane

To find F(E) in the limit            use the Mellin transforms 
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Location of the zeros of F( E)
In the limit            the zeros are on the real axis or below it !!
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Proof: Since H is hermitean
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Real zeros are bound states

Complex zeros with                     are resonances
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An example: the step potential

Take b(x) = 1 and 
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“Continuum” spectrum: 
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Discrete spectrum: 

Argand plot of F( E) for 
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Two step potentials

Algebraic potentials
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"(1/2 # i t) and " (2 # i t)Argand plot of 

1) Exact perturbative potential a(x) for 

2) Approximate potential a(x) for the smooth Riemann zeros 

3) Approximate potentials a(x), b(x) for  
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Suggestion:                   is proportional to the Jost function for a
model of  type I (        ) or type II (                  )
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Writting                                         and iterating one gets 
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There are                                       terms to the power  
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The series converges if  
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Perturbative solution of the model I
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The Riemann zeta function with
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Division versus multiplication

The Jost function can be  written as
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Hence the *square root of zeta(s) encodes all rational numbers 
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Zeta function on the critical line
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Zeros of  Z(t) = 0 are close to the zeros of

Approximate potential a(x) for the smooth Riemann zeros

! 

1+ e
2 i" ( t )

= 0

! 

a(x) = "2
sin(2# x)

x
$ ˆ a (t) = "

2i

t
e

2 i% (t )
+ O(t

"2
)Choose the potential

The Jost function is:
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Smooth zeros are quasibound states
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Approximate potentials a(x), b(x) for             (work in progress)
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The potentials can be choosen such that
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Choosing 
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Gives a good approximation near the zeros



Eliminating       gives the generic locus of the potential 
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Before and after the first Riemann zero t=14.1342…

At the zeros of zeta(1/2 - i t) the potential is:
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• Consistent quantization of H = xp, related to a BCS
model where time reversal is broken

•  H = xp + interaction model is a promising candidate to
realize the Polya-Hilbert conjecture.

• If correct the Riemann zeros would be discrete spectral
lines embbeded in the continuum, reconciling the Berry-
Keating and Connes spectral interpretations.

• H = x p can be generalized to discrete models
(universality).

• The Dirichlet L functions can be obtained at the smooth
     approximation.

Much more work is needed to answer these questions.
The story will continue….


