Superconductivity

 and
the Riemann zeros

Germán Sierra Institute of Theoretical Physics CSIC-UAM, Madrid, Spain

Statistical Field Theory and Quantum Devices Perugia, 16-19 July 2007

Quicks look to the zetia fumction

$$
\varsigma(s)=\sum_{1}^{\infty} \frac{1}{n^{s}}, \operatorname{Re} s>1
$$

The zetia function: Rosetia Stone in Maiths

Zeta(s) can be written in three different "languages"

Sum over the integers (Euler)

Product over primes (Euler)

$$
\varsigma(s)=\sum_{1}^{\infty} \frac{1}{n^{s}}, \operatorname{Re} s>1
$$

$$
\varsigma(s)=\prod_{p=2,3,5, \ldots} \frac{1}{1-p^{-s}}, \operatorname{Re} s>1
$$

Product over the zeros (Riemann)

$$
\varsigma(s) \propto \prod_{\rho}\left(1-\frac{s}{\rho}\right)
$$

The Riemann zeros and the prime numbers are dual objects
The RH imposes a bound to the chaotic behaviour of prime numbers
If RH is true then "there is music in the primes"
(M. Berry)

Buicf history ofthe nioblem:

- In 1999 Berry and Keating proposed that the 1D Hamiltonian $\mathrm{H}=\mathrm{xp}$ could be related to the non trivial zeros of the Riemann zeta function.
- A quantization of xp may contain the Riemann zeros in the spectrum.
- This result would imply a proof of the Riemann hypothesis.
- The Berry-Keating proposal was parallel to Connes adelic approach where the Riemann zeros appear as missing spectral lines

Outline of the talk

- Polya and Hilbert conjecture and support
- $\mathrm{H}=\mathrm{xp}$: semiclassical approaches
- A self-adjoint extension of $\mathrm{H}=x p$
- Russian doll BCS model of superconductivity
- H = xp + interactions: general theory
- Application to the Riemann zeros

```
Based on:
"The cyclic renormalization group and the Riemann zeros",
JSTAT (math.NT/0510572)
"H=xp with interaction and the Riemann zeros",
NPB (math-phys/0702034)
```


Polya and Hilliertconjecture[tivea 19i(0]]

The non trivial zeros of the zeta function are of the form

$$
\varsigma(s)=0, \quad s=\frac{1}{2}+i E
$$

where E is an eigenvalue of a selfadjoint operator H and therefore a real number.

Montgomery-Odlyzko law: The zeros obey locally the Gaussian Unitary Ensemble (GUE) statistics which suggests that H breaks the time reversal symmetry.

Berry's quantum chaos proposal: There is a classical chaotic system with isolated periodic orbits labelled by the prime numbers, which upon quantization yields the Riemann zeros in its spectrum.

Semiclassical apmonclit $\mathrm{H}=\mathrm{H} \mathrm{H}$ Berry-Heating / Connes [igggy

Classically $\mathrm{H}=\mathrm{xp}$ gives the trayectories

$$
x(t)=x_{0} e^{t}, p(t)=p_{0} e^{-t}, E=x_{0} p_{0}
$$

Time Reversal Symmetry is broken $(x \rightarrow x, p \rightarrow-p)$

Berry-Keating regularization

Planck cell in phase space: $\quad|x|>l_{x},|p|>l_{p}, \quad h=l_{x} l_{p}=2 \pi,(\hbar=1)$

Number of semiclassical states

$$
N(E)=\frac{\text { Area }}{h}=\frac{E}{2 \pi} \log \frac{E}{2 \pi e}+1
$$

Agrees with number of zeros asymptotically (smooth part)

Connes regularization

Cutoffs in phase space: $\quad|x|<\Lambda,|p|<\Lambda$

Connes cutoffs
Number of semiclassical states

$$
N(E)=\frac{E}{\pi} \log \frac{\Lambda^{2}}{2 \pi}-\frac{E}{2 \pi} \log \frac{E}{2 \pi e}
$$

As $\Lambda \rightarrow \infty$ spectrum = continuum - zeros

Spectral interpretation of the zeros:
 Absortion (Connes) or emission (Berry-Keating)?

A mixed regularization

Cutoffs in x space: $\quad l_{x}<x<\Lambda$

Number of semiclassical states

$$
N(E)=\frac{E}{2 \pi} \log \frac{\Lambda}{l_{x}}
$$

There is a continuum of states as in Connes with no trace of the zeros unlike in Berry-Keating!!

Al cuantization of $\mathrm{H} \equiv \mathrm{XID}$

Define the normal ordered operator $\quad H=\frac{1}{2}(x p+p x)=-i\left(x \frac{d}{d x}+\frac{1}{2}\right)$

The formal eigenfunctions are

$$
\psi_{E}(x)=\frac{C}{x^{1 / 2-i E}}
$$

H admits a self-adjoint extension in the region $1<\mathrm{x}<\mathrm{N}$ if

$$
e^{i \theta} \psi(1)=N^{1 / 2} \psi(N)
$$

which is satisfied by the eigenfunctions if $\quad N^{i E}=e^{i \theta}$

The spectrum is

$$
E_{n}=\frac{2 \pi}{\log N}\left(n+\frac{\theta}{2 \pi}\right), n=0, \pm 1, \ldots
$$

Which agrees with the semiclassical result $n=\frac{E_{n}}{2 \pi} \log N-\frac{\theta}{2 \pi}$
For $\boldsymbol{\theta}=\pi$ the spectrum is symmetric around zero

Relation with the Russilan dill BCS model]

The RD-BCS Hamiltonian (Leclair, Roman, GS, 2002)

$$
H_{B C S}\left(x, x^{\prime}\right)=\varepsilon(x) \delta\left(x-x^{\prime}\right)-\frac{1}{2}\left(g+i h \operatorname{sign}\left(x-x^{\prime}\right)\right)
$$

$\varepsilon(x)=$ Energy levels, $\mathrm{g}=\mathrm{BCS}$ coupling, $\mathrm{h}=\mathrm{T}$-breaking coupling
The many body model is exactly solvable (Dunning, Links)
For $\varepsilon(x)=x$ the eigenenergies and wave functions are

$$
\left(\frac{N-E_{B C S}}{1-E_{B C S}}\right)^{i h}=\frac{g+i h}{g-i h}, \quad \phi_{B C S}(x)=\frac{C}{\left(x-E_{B C S}\right)^{1-i h}}
$$

Map: BCS model and the $\mathrm{H}=\mathrm{xp}$ model

$$
\begin{aligned}
E_{B C S}=0 \text { state } & \leftrightarrow E \neq 0 \text { state } \\
h & \leftrightarrow E \\
h / g & \leftrightarrow \tan (\theta / 2) \\
\phi_{B C S}(x) & \leftrightarrow x^{-1 / 2} \psi_{X P}(x)
\end{aligned}
$$

The inverse Hamiltonian 1/xp

$$
H=\frac{1}{2}(x p+p x)=x^{1 / 2} p x^{1 / 2} \rightarrow H^{-1}=x^{-1 / 2} p^{-1} x^{-1 / 2}
$$

$1 / p$ is a 1 D Green function, then

$$
H^{-1}\left(x, x^{\prime}\right)=\frac{i}{2} \frac{\operatorname{sign}\left(x-x^{\prime}\right)}{\sqrt{x x^{\prime}}}
$$

The Schroedinger equation is

$$
\frac{i}{2} \int_{1}^{N} d x^{\prime} \frac{\operatorname{sign}\left(x-x^{\prime}\right)}{\sqrt{x x^{\prime}}} \psi\left(x^{\prime}\right)=\frac{1}{E} \psi(x)
$$

Which implies for $\quad \phi(x)=x^{-1 / 2} \psi(x)$

$$
x \phi(x)-\frac{i E}{2} \int_{1}^{N} d x^{\prime} \operatorname{sign}\left(x-x^{\prime}\right) \phi\left(x^{\prime}\right)=0
$$

This is the BCS model $\varepsilon(x)=x, \quad h=E, \quad g=0 \rightarrow \theta=\pi$

H=xid finteractions:yenerall modell

Define the antisymmetric matrix

$$
H^{-1}\left(x, x^{\prime}\right)=\frac{i \operatorname{sign}\left(x-x^{\prime}\right)+a(x) b\left(x^{\prime}\right)-b(x) a\left(x^{\prime}\right)}{\sqrt{x x^{\prime}}}, 1<x, x^{\prime}<N
$$

$a(x)$ and $b(x)$ are real "potentials".
$H\left(x, x^{\prime}\right)$ is defined as the inverse of this matrix.
The interaction is a "proyector" into the states

$$
\psi_{a}(x)=\frac{a(x)}{x^{1 / 2}}, \quad \psi_{b}(x)=\frac{b(x)}{x^{1 / 2}},
$$

Type $\mathrm{I}: \mathrm{b}(\mathrm{x})=1$ and $\quad \psi_{a}$ is a square normalizable function.
Type 1I: ψ_{a}, ψ_{b} are square normalizable functions
The model is exactly solvable for generic potentials

Exact solution

The eigenenergies E are given by the solutions of

$$
F(E)+F(-E) N^{i E}=0
$$

$F(E)$ plays the role of a Jost function
Spectrum in the limit $\quad N \rightarrow \infty$

- If $F(E) \neq 0$ scattering state (delocalized)
- If $F(E)=0$ bound state (localized)

The bound states (if any) are embbeded in the continuum!!

Similar to the von Neumann-Wigner potential (1 bound state with positive energy)

Eigenfunctions

$$
\psi_{E}(x)=\frac{1}{x^{1 / 2-i E}}\left[C+\int_{x}^{\infty} d y y^{-i E}\left(A \frac{d b(y)}{d y}-B \frac{d a(y)}{d y}\right)\right]
$$

A, B, C are integration constants which depend on E

$$
C=F(E)
$$

at large distances $\psi_{E}(x)$ is dominated by C term which vanishes when $\mathrm{F}(\mathrm{E})=0$ and the state becomes localized

Localization is due to an interference effect and it is very sensitive to the form of the potential.

The Jost funtion F(E)

To find $\mathrm{F}(\mathrm{E})$ in the limit $N \rightarrow \infty$ use the Mellin transforms

$$
\hat{f}(E)=\int_{1}^{\infty} d x x^{-1+i E} f(x), \quad f=a, b
$$

Given two functions f and g define

$$
S_{f, g}(E)=-\frac{E^{2}}{4} \hat{f}(E) \hat{g}(-E)+\frac{i E}{4} P \int_{-\infty}^{\infty} \frac{d t}{\pi} \frac{t \hat{f}(t) \hat{g}(-t)}{t-E}
$$

Then

$$
\begin{aligned}
& \text { Type I: } \quad F(E)=1+i E \hat{a}(E)-S_{a, a}(E) \\
& \text { Type II: } F(E)=1+S_{a, b}-S_{b, a}+S_{a, a} S_{b, b}-S_{a, b} S_{b, a}
\end{aligned}
$$

$F(E)$ is analytic in the complex upper half plane

Location of the zeros of $F(E)$

In the limit $N \rightarrow \infty$ the zeros are on the real axis or below it !!

$$
\text { If } F(E)=0 \Rightarrow \ln E \leq 0
$$

Proof: Since H is hermitean

$$
\forall N, E, \operatorname{Im} E \neq 0 \Rightarrow F_{N}(E)+F_{N}(-E) N^{i E} \neq 0
$$

Take $\operatorname{Im} E>0, N \rightarrow \infty$ then $\quad F_{\infty}(E) \neq 0$

Real zeros are bound states
Complex zeros with $\operatorname{Im} E<0$ are resonances

An example: the step potential

Take $\mathrm{b}(\mathrm{x})=1$ and $\quad a(x)=\left\{\begin{array}{cc}a_{1} & 1<x<x_{1} \\ 0 & x_{1}<x<\infty\end{array}\right.$

$$
H^{-1}\left(x, x^{\prime}\right)=\frac{i}{2 \sqrt{x x^{\prime}}}\left(\begin{array}{cccc}
0 & -1 & a_{1}-1 & a_{1}-1 \\
1 & 0 & a_{1}-1 & a_{1}-1 \\
1-a_{1} & 1-a_{1} & 0 & -1 \\
1-a_{1} & 1-a_{1} & 1 & 0
\end{array}\right)
$$

Jost function: $\quad F(E)=1+C\left(x_{1}^{i E}-1\right)$
$C=\frac{a_{1}\left(2-a_{1}\right)}{2} \leq \frac{1}{2} \rightarrow a_{1}=1 \pm \sqrt{1-2 C}$
Symmetry: $\quad a_{1} \leftrightarrow 2-a_{1}$

Argand plot of $F(E)$ for

$$
a_{1}=0.2,0.4,0.6,1
$$

"Continuum" spectrum: $a_{1}=1 \rightarrow E_{n}=\frac{2 \pi}{\log \left(N / x_{1}\right)}(n+1 / 2), n=0, \pm 1, \cdots$

Discrete spectrum:

$$
a_{1}=1 \rightarrow E_{n}=\frac{2 \pi}{\log x_{1}}(n+1 / 2), n=0, \pm 1, \cdots
$$

Zeros of $F(E)$

$$
F(E)=0 \Rightarrow\left|x_{1}^{i E}\right|=\left|1+\frac{2}{a_{1}\left(a_{1}-2\right)}\right| \geq 1 \Rightarrow \operatorname{Im} E \leq 0
$$

Two step potentials

$$
a(x)=a_{1} \theta\left(x_{1}-x\right), \quad b(x)=b_{1} \theta\left(x_{2}-x\right)
$$

Algebraic potentials

$$
a(x)=\frac{a_{1}}{x}+\frac{a_{2}}{x^{4}}, \quad b(x)=\frac{b_{1}}{x^{0.03}}
$$

$$
\begin{array}{ll}
\text { Type I: } & \operatorname{Re} F(E)=\left|1+\frac{i}{2} E \hat{a}(E)\right|^{2} \geq 0 \\
\text { Type II: } & \operatorname{Re} F(E) \geq 0 \text { or } \leq 0
\end{array}
$$

Aymiligation lio tice zelia function

Argand plot of $\quad \varsigma(1 / 2-i t)$ and $\quad \varsigma(2-i t)$

Suggestion: $\varsigma(\sigma-i t)$ is proportional to the Jost function for a model of type I $(\sigma>1)$ or type II $(1 / 2 \leq \sigma \leq 1)$

1) Exact perturbative potential $\mathrm{a}(\mathrm{x})$ for $\varsigma(\sigma-i t), \quad \sigma>1$
2) Approximate potential $a(x)$ for the smooth Riemann zeros
3) Approximate potentials $\mathrm{a}(\mathrm{x}), \mathrm{b}(\mathrm{x})$ for $\varsigma(1 / 2-i t)$

Perturbative solution of the model I

$$
F(t)=1-4 a+4 a * a, \quad a(t)=-i t \hat{a}(t) / 4
$$

Where the * product is defined as

$$
(a * b)(z)=a(z) b(-z)+P \int_{-\infty}^{\infty} \frac{d t}{i \pi} \frac{a(t) b(-t)}{t-z}
$$

Writting $a=g+a * a, g=(1-F) / 4$ and iterating one gets

$$
a=g+g * g+(g * g) * g+g *(g * g)+\ldots
$$

There are $C_{n-1}=\frac{1}{n}\binom{2(n-1)}{n-1} \approx \frac{4^{n}}{n^{3 / 2}}$ terms to the power g^{n}

The series converges if

$$
|F(t)-1| \leq 1, \quad \forall t
$$

The Riemann zeta function with $\sigma>1$

$$
F(t)=C \varsigma(\sigma-i t), \quad \sigma>1, \quad C=1 / \varsigma(\sigma)
$$

It satisfies $\quad F(0)=1, \quad \operatorname{Re} F(t) \geq 0, \quad|F(t)-1| \leq 1, \quad \forall t$

$$
a(t)=c_{1}+c_{2} \varsigma(\sigma-i t)+c_{3} \varsigma_{2}(\sigma, t)+\ldots
$$

Where $\quad \varsigma_{2}(\sigma, t)=\sum_{n>m \geq 0} \frac{1}{n^{\sigma-i t} m^{\sigma+i t}} \quad$ is a Euler-Zagier zeta function

For $\quad \sigma=2$

Division versus multiplication

The Jost function can be written as

$$
F=f * f, \quad f=1-2 a
$$

The * product implements the division of numbers

$$
f=c_{1} r_{1}^{i t}+c_{2} r_{2}^{i t} \rightarrow f * f=c_{1}^{2}+c_{2}^{2}+2 c_{1} c_{2}\left(\frac{r_{1}}{r_{2}}\right)^{i t}, \quad\left(r_{1}>r_{2}\right)
$$

Hence the *square root of zeta(s) encodes all rational numbers

$$
\begin{gathered}
\varsigma=f * f \rightarrow \text { Integers }=\sum \frac{\text { Rational }}{\text { Rational }} \\
\varsigma=\sum_{n=1} \frac{n^{i t}}{n^{\sigma}}(n \in \mathrm{~N}) \quad f=\sum_{r=1} c_{r} r^{i t}(r \in Q)
\end{gathered}
$$

To be compare with the Euler product formula

$$
\varsigma=\prod_{p} \frac{1}{1-p^{-s}}(p \in P) \rightarrow \text { Integer }=\Pi \text { primes }
$$

Approximate potential $a(x)$ for the smooth Riemann zeros
Zeta function on the critical line
$Z(t)$:Riemann-Siegel zeta function
$\vartheta(t)$ is a phase

$$
\begin{aligned}
& \zeta(1 / 2-i t)=Z(t) e^{i \vartheta(t)} \\
& e^{2 i \vartheta(t)}=\pi^{-i t} \frac{\Gamma\left(\frac{1}{4}+\frac{i t}{2}\right)}{\Gamma\left(\frac{1}{4}-\frac{i t}{2}\right)}
\end{aligned}
$$

Zeros of $Z(t)=0$ are close to the zeros of

$$
1+e^{2 i \vartheta(t)}=0
$$

Choose the potential

$$
a(x)=-2 \frac{\sin (2 \pi x)}{\sqrt{x}} \rightarrow \hat{a}(t)=-\frac{2 i}{t} e^{2 i \vartheta(t)}+O\left(t^{-2}\right)
$$

The Jost function is:

$$
F(E)=2\left(1+e^{2 i \vartheta(t)}\right)+O\left(t^{-1}\right)
$$

Smooth zeros are quasibound states

Approximate potentials $a(x), b(x)$ for $\sigma=1 / 2$ (work in progress)

The potentials can be choosen such that

$$
F=1-2 a b^{*}+(a * a)(b * b)
$$

Make the guess $\quad|a(t)|=|b(t)|$

$$
\begin{aligned}
& F=1-2 c+c \otimes c, \quad c(t)=a(t) b(-t) \\
& (c \otimes c)(z)=\left(|c(z)|+\int_{-\infty}^{\infty} \frac{d t}{i \pi} \frac{|c(t)|}{t-z}\right)^{2}=(|c(z)|-i \kappa(z))^{2}
\end{aligned}
$$

Choosing

$$
c(t)=(1-F(t)) / 2
$$

Gives a good approximation near the zeros

Real and imaginary parts

$$
\begin{aligned}
& F_{R}=1-2 c_{R}+|c|^{2}-\kappa^{2} \\
& F_{I}=-2\left(c_{I}+|c| \kappa\right)
\end{aligned}
$$

Eliminating $\mathbb{<}$ gives the generic locus of the potential

$$
\left(c_{R}^{2}+c_{I}^{2}\right)\left(c_{R}^{2}+c_{I}^{2}-2 c_{R}+1-F_{R}\right)-\left(c_{I}+F_{I} / 2\right)^{2}=0
$$

Before and after the first Riemann zero $t=14.1342 \ldots$

At the zeros of zeta($1 / 2-i t$) the potential is:

$$
c\left(t_{0}\right)=\sin \boldsymbol{\vartheta}_{0} e^{i\left(\vartheta_{0}-\pi / 2\right)} \quad\left(\boldsymbol{\vartheta}_{0}=\boldsymbol{\vartheta}\left(t_{0}\right)\right)
$$

Away from the zeros one expects $\quad|a(t)| \neq|b(t)|$

Conclusions and suggestions

- Consistent quantization of $\mathrm{H}=\mathrm{xp}$, related to a BCS model where time reversal is broken
- $\mathrm{H}=\mathrm{xp}+$ interaction model is a promising candidate to realize the Polya-Hilbert conjecture.
- If correct the Riemann zeros would be discrete spectral lines embbeded in the continuum, reconciling the BerryKeating and Connes spectral interpretations.
- $H=x p$ can be generalized to discrete models (universality).
- The Dirichlet L functions can be obtained at the smooth approximation.

Much more work is needed to answer these questions.
The story will continue....

