Entanglement in Spin Chains

Vladimir Korepin
Yang Institute for Theoretical Physics,
State University of New York at Stony Brook, Stony Brook

Entanglement is a resource for quantum computation. How much quantum effects we can use to control one quantum system by another.

OUTLINE

1. Entanglement of two quantum subsystems A and B. Simplest case when the whole system $\{A, B\}$ is in a pure state: a unique wave function $\left|\Psi^{A, B}\right\rangle$. Entropy of a subsystem is a measure of entanglement.
2. The wave function will be a unique ground state of a dynamical model: interacting spins, Bose gas or strongly correlated electrons. Universal properties of entropy of a large subsystem.

Easy to explain when entanglement is absent:

$$
\left|\Psi^{A, B}\right\rangle=\left|\Psi^{A}\right\rangle \otimes\left|\Psi^{B}\right\rangle \Longleftrightarrow \text { no entanglement }
$$

But if the wave function is a sum of several such terms

$$
\left|\Psi^{A, B}\right\rangle=\sum_{j=1}^{d} \quad\left|\Psi_{j}^{A}\right\rangle \otimes\left|\Psi_{i}^{B}\right\rangle \quad \text { entangled. }
$$

Here $d>1$ and $\left|\Psi_{j}^{\boldsymbol{A}}\right\rangle$ are linear independent; as well as $\left|\Psi_{j}^{B}\right\rangle$.
Measure of entanglement? C.H. Bennett, H.J. Bernstein,
S.Popescu, and B.Schumacher 1996 entropy of a subsystem :

$$
S=-\operatorname{tr}_{A}\left(\rho_{A} \ln \rho_{A}\right), \quad \rho_{A}=\operatorname{tr}_{B}\left(\left|\Psi^{A, B}\right\rangle\left\langle\Psi^{A, B}\right|\right)
$$

Contra-intuitive features: Two spins $1 / 2$ forming spin 1.

$$
|\uparrow\rangle \otimes|\uparrow\rangle \quad \text { no entanglement }
$$

but middle component with $S_{z}=0$ is maximally entangled:

$$
|\uparrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle \quad \text { maximum entanglement }
$$

Entanglement depends on S_{z}.
Ferromagnetic XXX:

$$
\mathrm{H}_{\mathrm{f}}=-\sum_{j=1}^{L}\left\{\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\sigma_{j}^{z} \sigma_{j+1}^{z}\right\}
$$

σ are Pauli matrices. $\left[\mathrm{H}_{\mathrm{f}}, \boldsymbol{S}_{z}\right]=0, S_{z}=\left({ }_{\Sigma} \boldsymbol{j}=1 \sigma_{j}^{z}\right)$
We can fix S_{z} to fix ground state uniquely:
Maximum of $S_{z}=\left({ }_{\Sigma}{ }_{j=1}^{L} \sigma_{j}^{z}\right)$
$|\uparrow\rangle \otimes|\uparrow\rangle \ldots \otimes|\uparrow\rangle \quad$ no entanglement.

We can lower S_{z} by applying the operator $S^{-}=\left({ }^{\boldsymbol{L}} \boldsymbol{j}=1\right.$

$$
\left|\Psi_{f m}\right\rangle=\left(S^{-}\right)^{M}(|\uparrow\rangle \otimes|\uparrow\rangle \ldots \otimes|\uparrow\rangle) \quad \text { entangled }
$$

Non-trivial magnetization S_{z} / L if $M \rightarrow \infty$ proportionally to $L \rightarrow \infty$. We shall artificially represent the ground state as by partite system:

Block of spins on an space interval $[1, x]$ is the subsystem A, the rest of the ground state is the subsystem B.

Entanglement of a block of spins on a space interval $[1, x]$ with the rest of the ground state $\left|\Psi_{f m}\right\rangle$.
Density matrix of the block $\rho(x)$ the entropy of the block $S(x)$.

$$
S(x) \rightarrow \frac{1}{2} \ln (x), \quad x \rightarrow \infty, \quad \text { F }
$$

Double scaling limit $1 \ll \boldsymbol{x} \ll \boldsymbol{L}$. Salerno and Popkov 2004

Anti - ferromagnetic XXX:

$$
\mathrm{H}_{\mathrm{af}}=\sum_{j}\left\{\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\sigma_{j}^{z} \sigma_{j+1}^{z}\right\}
$$

The ground state is unique and has spin 0 . Also a gapless case, but for low lying excitations energy is proportional to momentum $\epsilon \sim p$. So one can use conformal field theory for evaluation of asymptotic of entropy of a large block of spins, belonging to the ground state:

$$
S(x) \rightarrow \frac{1}{3} \ln (x), \quad x \rightarrow \infty, \quad \mathrm{AF}
$$

Holzhey, Larsen and Wilczek 1994. Finite size corrections

$$
S(x)=\ln (x) / 3+x_{0}+\sum_{j=1}^{\infty} a_{j} / x^{j}
$$

Zamolodchikov, Fatteev, Takhatajan and Babujian:

$$
\begin{gathered}
\mathrm{H}_{1}=\sum_{n}\left\{X_{n}-X_{n}^{2}\right\} \quad \text { spin } \quad \mathrm{s}=1 \\
X_{n}=\vec{S}_{n} \vec{S}_{n+1}=S_{n}^{x} S_{n+1}^{x}+S_{n}^{y} S_{n+1}^{y}+S_{n}^{z} S_{n+1}^{z}
\end{gathered}
$$

Solvable by Bethe Ansatz.
Higher spin s Faddeev 1983:

$$
\begin{aligned}
\mathrm{H}_{s} & =\sum_{\boldsymbol{n}} \boldsymbol{F}\left(X_{n}\right), \quad F(X) \text { is a polynomial of degree } 2 \mathrm{~s} \\
F(X) & =2 \sum_{l=0}^{2 \mathrm{~s}} \sum_{k=l+1}^{2 \mathrm{~s}} \frac{1}{\sum_{k} \prod_{\substack{j=0 \\
j \neq l}}^{2 \mathrm{X}} \frac{X-y_{j}}{y_{l}-y_{j}}, \quad y_{l}=l(l+1) / 2-\mathrm{s}(\mathrm{~s}+1)}
\end{aligned}
$$

The entropy of a block of x spins V.K. 2003:

$$
S(x)=\frac{\mathrm{s}}{\mathrm{~s}+1} \ln x, \quad \text { as } \quad x \rightarrow \infty
$$

Other models: Bose gas with delta interaction:

$$
H=\int d x\left[\partial \psi_{x}^{\dagger} \partial \psi_{x}+g \psi^{\dagger} \psi^{\dagger} \psi \psi\right]
$$

Here ψ is a canonical Bose field and $g>0$ is a coupling constant.

$$
\mathcal{H}_{N}=-\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}}+2 g \sum_{N \geq k>l \geq 1}^{\sum} \delta\left(x_{k}-x_{l}\right)
$$

Bethe Ansaz: E. Lieb, W.Liniger in 1963.
The entropy of gas on a space interval $[0, x]$ also scales as

$$
S(x) \rightarrow \frac{1}{3} \ln (x), \quad x \rightarrow \infty
$$

V.K, 2004

The Hubbard model H :

$$
H=-\sum_{\substack{j=1 \\ \sigma=\uparrow, \downarrow}}\left(c_{j, \sigma}^{\dagger} c_{j+1, \sigma}+c_{j+1, \sigma}^{\dagger} c_{j, \sigma}\right)+u \sum_{j=1} n_{j, \uparrow} n_{j, \downarrow}
$$

Here $\boldsymbol{c}_{j, \sigma}^{\dagger}$ is a canonical Fermi operator on the lattice [creates of an electron] and $n_{j, \sigma}=c_{j, \sigma}^{\dagger} c_{j, \sigma}$ is an operator on number of electrons in cite number j with spin $\sigma, u>0$. Lieb and Wu in 1968. Below half filling [less then one electron per lattice cite] both charge and spin degrees of freedom can be described by Virasoro algebra with central charge equal to 1, Korepin, Frahm $1990: c_{c}=1 \quad$ and $\quad c_{s}=1$.

$$
S(x)=\frac{2}{3} \ln x
$$

V.K. 2004. At half filed band $S(x)=(1 / 3) \ln x$

Rényi entropy also scales logarithmically

$$
S_{\alpha}=\frac{1}{1-\alpha} \ln \operatorname{Tr}\left(\rho_{A}^{\alpha}\right)=\left(\frac{1+\alpha^{-1}}{6}\right) \ln x
$$

Bai Qi Jin , Korepin 2004

The entropy of a block of spins for a model with a gap approaches a constant S_{∞} as the size of the block increases:

$$
S(x) \rightarrow S_{\infty} \quad \text { as } \quad x \rightarrow \infty
$$

The Hamiltonian of $X Y$ model :

$$
H=-\sum_{n=-\infty}^{\infty}(1+\gamma) \sigma_{n}^{x} \sigma_{n+1}^{x}+(1-\gamma) \sigma_{n}^{y} \sigma_{n+1}^{y}+h \sigma_{n}^{z}
$$

Here γ is anisotropy parameter: $0<\gamma<1$ and $0<h$ is a magnetic field and σ_{n} are Pauli matrices. Solution, phase transitions: Lieb, Schultz, Mattis, Barouch and McCoy. Toeplitz determinants and integrable Fredholm operators were used for evaluation of correlation functions,

The model has three different cases:

1. Case 1a: $\quad 2 \sqrt{1-\gamma^{2}}<h<2$. medium magnetic field
2. Case 1b: $\quad 0 \leq h<2 \sqrt{1-\gamma^{2}}$, small magnetic field
3. Case 2: $\quad h>2$, strong magnetic field
A.Its, B.-Q. Jin, V. Korepin 2004: Case 1b

$$
S_{\infty}=\frac{1}{6}\left[\ln \left(\frac{k^{2}}{16 k^{\prime}}\right)+\left(1-\frac{k^{2}}{2}\right) \frac{4 I(k) I\left(k^{\prime}\right)}{\pi}\right]+\ln 2
$$

with $k^{\prime}=\sqrt{1-k^{2}}$, and

$$
k=\sqrt{\frac{1-(h / 2)^{2}-\gamma^{2}}{1-(h / 2)^{2}}} \quad I(k)=\int_{0}^{\pi / 2} \frac{d \alpha}{\sqrt{1-k^{2} \sin ^{2} \alpha}}
$$

$I(k)$ is the complete elliptic integral of the first kind:
I. Peschel 2004: Case 1a: medium magnetic field

$$
S_{\infty}=\frac{1}{6}\left[\ln \left(\frac{k^{2}}{16 k^{\prime}}\right)+\left(1-\frac{k^{2}}{2}\right) \frac{4 I(k) I\left(k^{\prime}\right)}{\pi}\right]+\ln 2
$$

and in Case 2 : strong magnetic field

$$
\begin{gather*}
S_{\infty}=\frac{1}{12}\left[\ln \frac{16}{\left(k^{2} k^{\prime 2}\right)}+\left(k^{2}-k^{\prime 2}\right) \frac{4 I(k) I\left(k^{\prime}\right)}{\pi}\right] \tag{1}\\
k= \begin{cases}\sqrt{(h / 2)^{2}+\gamma^{2}-1} / \gamma, & \text { Phase 1a } \\
\gamma / \sqrt{(h / 2)^{2}+\gamma^{2}-1}, & \text { Phase 2 }\end{cases} \tag{2}
\end{gather*}
$$

Consider range of variation: S_{∞} reaches minimum as ordered states and it reaches maximum at phase transitions [disordered states].

Local minimum $S_{\infty}=\ln 2$ at boundary between cases 1 a and
1b: $h=2 \sqrt{1-\gamma^{2}}$
The ground state is doubly degenerated:

$$
\begin{aligned}
\left|G_{1}\right\rangle & =\prod_{n \in \operatorname{lattice}}^{\Pi}\left[\cos (\theta)\left|\uparrow_{n}\right\rangle+(-1)^{n} \sin (\theta)\left|\downarrow_{n}\right\rangle\right] \\
\left|G_{2}\right\rangle & =\prod_{n \in \operatorname{lattice}}^{\Pi}\left[\cos (\theta)\left|\uparrow_{n}\right\rangle-(-1)^{n} \sin (\theta)\left|\downarrow_{n}\right\rangle\right]
\end{aligned}
$$

Each state is factorized and has no entropy.
$\cos ^{2}(2 \theta)=(1-\gamma) /(1+\gamma)$
Absolute minimum of is reached at $h \rightarrow \infty: S_{\infty} \rightarrow 0$ as the state becomes ferromagnetic $\uparrow \ldots \uparrow$.

These are most ordered states. These is a gap.

Phase transitions: as the gap closes $S_{\infty} \rightarrow+\infty$

1. Critical magnetic field: $h \rightarrow 2$ and $\gamma \neq 0$:

$$
S_{\infty} \rightarrow-\frac{1}{6} \ln |2-h|+\frac{1}{3} \ln 4 \gamma+O\left(|2-h| \ln ^{2}|2-h|\right)
$$

2. An approach to $\boldsymbol{X} \boldsymbol{X}$ model: $\gamma \rightarrow \mathbf{0}$ and $\mathbf{0}<\boldsymbol{h}<\mathbf{2}$:

$$
S_{\infty} \rightarrow-\frac{1}{3} \ln \gamma+\frac{1}{6} \ln \left(4-h^{2}\right)+\frac{1}{3} \ln 2+O\left(\gamma \ln ^{2} \gamma\right)
$$

This agrees with conformal approach of P. Calabrese, J. Cardy and Toeplitz determinant approach of B.-Q. Jin, V.Korepin.

Let us consider another gapped spin chain introduced by Affleck, Kennedy, Lieb, and Tasaki: AKLT model also known as VBS. It consists of a chain of N spin-1's in the bulk, and two spin-1/2 on the boundary. We shall denote by $\vec{S}_{\boldsymbol{k}}$ the vector of spin-1 operators and by \vec{s}_{b} spin-1/2 operators at boundaries.

$$
H=\sum_{k=1}^{N-1}\left(\vec{S}_{k} \vec{S}_{k+1}+\frac{1}{3}\left(\vec{S}_{k} \vec{S}_{k+1}\right)^{2}\right)+\pi_{0,1}+\pi_{N, N+1}
$$

Notice that $\frac{1}{2} \vec{S}_{k} \vec{S}_{k+1}+\frac{1}{6}\left(\vec{S}_{k} \vec{S}_{k+1}\right)^{2}+\frac{1}{3}$ is a projector on a state of spin 2 . The terms π describe interaction of boundary spin $1 / 2$ and next spin $1 ; \pi$ is a projector on a state with spin 3/2:

$$
\pi_{0,1}=\frac{2}{3}\left(1+\vec{s}_{0} \vec{S}_{1}\right), \quad \pi_{N, N+1}=\frac{2}{3}\left(1+\vec{s}_{N+1} \vec{S}_{N}\right)
$$

Ground state is unique and there is a gap:

a dot is spin- $\frac{1}{2}$; circle means symmetrisation [makes spin 1]. A line is a anti-symmetrisation $(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)$ lower joint spin.
Correlation function are: $<\overrightarrow{\boldsymbol{S}}_{\boldsymbol{x}} \boldsymbol{\vec { \boldsymbol { S } }}_{\mathbf{1}}>\sim(-1 / 3)^{x}=p(x)$
Fan, Korepin and Roychowdhury calculated entropy of a finite block of spins in the ground state on a finite lattice:

$$
\begin{aligned}
S(x)= & 2+\frac{3(1-p(x))}{4} \log (1-p(x))- \\
& -\frac{1+3 p(x)}{4} \log (1+3 p(x)),
\end{aligned}
$$

In double scaling limit the expression simplifies:

$$
S(x) \rightarrow 2-(3 / 2) p(x) \quad \text { as } \quad x \rightarrow \infty
$$

AKLT construction is universal. Consider Cayley tree: each lattice site has three neighbors; no loops. Spin at a lattice site is $3 / 2$. Each dot is spin $1 / 2$, circle is symmetrisation, line is anti-symmetrisation.

The Hamiltonian of the AKLT model is

$$
\begin{equation*}
H=\sum_{(i, j)} P_{3}\left(\vec{S}_{i}+\vec{S}_{j}\right) \tag{3}
\end{equation*}
$$

P_{3} is a projector on a joint state with spin 3 , and (i, j) are neighbors on the lattice. The ground state is unique and similar to 1D case. Symmetrisation in each lattice cite and antisymmetrisation along the links. There is a gap. We calculated the entropy of a block of spins:

Figur 1: Cayley tree has no loops. Dotted circle shows the block of spins.
$\boldsymbol{S}_{\boldsymbol{\infty}}=$ number of links necessary to cut to isolate the block.

Up to now we considered only pure states: unique ground state. How we measure the entanglement in mixed states?

First in models described by conformal field theory one can calculate the entropy of a block of spins for positive temperature:

$$
S(x)=\frac{1}{3} \ln \left(\frac{v_{s}}{\pi T} \sinh \left[\frac{\pi T x}{v_{s}}\right]\right)
$$

V.K. 2003. For large blocks

$$
S(x)=\frac{\pi T x}{3 v_{s}} \quad \text { as } \quad x \rightarrow \infty
$$

This is second law of thermodynamics. At large temperature the block of spins strongly interacts with the environment [rest of the ground state] off-diagonal elements of density matrix vanish [de-coherence]. The block turns into a classical system of macroscopical size. Lot of entropy, but no quantum effects.

For mixed states entropy of a subsystem is not a measure of entanglement. What is a measure of entanglement of two quantum subsystems A and B which stay together in a mixed state $\{A, B\}$? We can describe the state $\{A, B\}$ by a density matrix $\rho_{A, B}$. In 2001G. Vidal and R.F. Werner suggested negativity as measure of entanglement. Recall that $\rho_{A, B}$ is a positive matrix. But partially transposed $\rho_{A, B}^{T_{A}}$ does not have to be positive. A measure of entanglement of two quantum subsystems A and B in a mixed state $\{A, B\}$ is negativity:

$$
\mathcal{N}_{A, B}=\mid \Sigma \text { negative eigenvalues of } \rho_{A, B}^{T_{A}} \mid
$$

Vidal and Werner proved that it vanishes for unentangled states. $\mathcal{N}_{A, B}$ does not increase under LOCC.

Negativity does not increase under local manipulations of the system. It provides a bound on the teleportation capacity and on the distillable entanglement of mixed states. Negativity can be used to quantify a degree of entanglement in mixed systems. Sometimes logarithmic negativity also used

$$
\mathcal{E}=\log _{2}(2 \mathcal{N}(\rho)+1)
$$

The entanglement has to be measured differently for pure and mixed states. Entropy of a subsystem measures entanglement at zero temperature only. In double scaling limit it shows universality. For gapped models entropy of a subsystem is proportional to the area of the boundary. In 1D many gapless models can be described by conformal field theory. Still one should be careful, for some gapless models $\epsilon \sim \boldsymbol{p}^{2}$, then the entropy also scales logarithmically but the coefficient is different. Analysis of entropy helps to find most ordered states.
[1] C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046, (1996)
[2] C.H.Bennett, D.P.DiVincenzo,Nature 404, 247 (2000)
[3] C.Holzhey, F.Larsen, F.Wilczek, Nucl. Phys. B 424, (1994)
[4] M.E.Fisher and R.E.Hartwig, Adv. Chem. Phys. 15, (1968)
[5] A.Affleck, T.Kennedy, E.H.Lieb and H.Tasaki, Phys. Rev. Lett. 59, 799 (1987).
[6] G.Vidal, J.I.Latorre, E.Rico, and A.Kitaev, Phys. Rev. Lett. 90,227902-1 (2003)
[7] S. Michalakis, B. Nachtergaele, Entanglement in Finitely Correlated States, math-ph/0606018
[8] S. Lloyd,Science 261,1569(1993)
[9] V. Popkov, M. Salerno,quant-ph/0404026
[10] J. P. Keating, F. Mezzadri, Commun. Math. Phys., Vol. 252 (2004), 543-579
[11] J. P. Keating, F. Mezzadri, Phys.Rev.Lett. 94 (2005) 050501
[12] V. Popkov, M. Salerno and G. Schuetz, quant-ph/0506209
[13] M.Srednicki, Phys.Rev.Lett.71,666(1993).
[14] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B,241, 333 (1984)
[15] V.E.Korepin, Phys.Rev. Lett.92, 096402 (2004), condmat/0311056
[16] P. Calabrese, J. Cardy, hep-th/0405152
[17] F.D.M. Haldane Phys. Rev. Lett.,47, 1840 (1981)
[18] I. Affleck, Phys. Rev. Lett. 56, 746 (1986)
[19] F.Verstraete and J.I.Cirac, quant-ph/0311130.
[20] M.B.Plenio, J.Eisert, J.Dreißig, and M.Cramer, Phys.Rev.Lett.94,060503(2005).
[21] A.Hamma, R.lonicioiu, P.Zanardi, Phys.Lett.A 337, 22 (2005);Phys.Rev.A 71,022315 (2005).
[22] F.Verstraete, M.A.Martín-Delgado, J.I.Cirac, Phys. Rev. Lett. 92, 087201 (2004).
[23] F.Verstraete, M.Popp, J.I.Cirac, PRL92, 027901 (2004).
[24] H. Fan, V. Korepin, V. Roychowdhury, PRL, 93, 227203, 2004
[25] A. R. Its, B.-Q. Jin, V. E. Korepin, Journal Phys. A: Math. Gen. 38, 2975, 2005
[26] I. Peschel , Journal of Statistical Mechanics P12005, 2004
[27] M. Takahashi, Thermodynamics of One-Dimensional Solvable Models, Cambridge Univ. Press, 1999
[28] E.H. Lieb, W. Liniger, Phys. Rev. 130 , 1605, (1963)
[29] E. Lieb, T. Schultz and D. Mattis, Ann. Phys. 16, 407, (1961)
[30] E. Barouch and B.M. McCoy, Phys. Rev. A 3, 786, (1971)
[31] E. Barouch, B.M. McCoy and M. Dresden, Phys. Rev. A 2, 1075, (1970)
[32] D.B. Abraham, E. Barouch, G. Gallavotti and A. MartinLöf, Phys. Rev. Lett. 25, 1449, (1970); Studies in Appl. Math. 50, 121, (1971); ibid 51, 211, (1972)
[33] V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Univ. Press, 1993
[34] K. Huang, Statistical Mechanics, Wiley, 1987
[35] L.D. Landau, E.M. Lifshitz et al Statistical Physics, 3rd edition, Butterworth-Heinemann, (2002)
[36] B.-Q. Jin and V.E. Korepin, arXiv: quant-ph/0304108 [37] E.H. Lieb, F.Y. Wu, Phys. Rev. 20 , 1445, (1968)
[38] F.H.L. Essler, V.E. Korepin, Exactly Solvable Models of Strongly Correlated electrons, World Scientific ,1994
[39] H. Frahm and V. Korepin, Phys. Rev. B,42, 10553 (1990)
[40] R.R.P. Singh, M. E.Fisher and R.Shankar, Phys. Rev. B, 39, 2562, 1989
[41] H. Bethe, Zeitschrift fur Physik 71, 205, 1931
[42] A.Zamolodchikov, V.Fateev, Jadernaya Fizika 32, 581, 1980
[43] L.A. Takhatajan, Phys.Lett. A 87, 479, 1982
[44] H.M. Babujian, Nucl.Phys.B bf215, 317, 1983
[45] V.O. Tarasov, L.A. Takhatajan and L.D. Faddeev, Teor. Mat. Phys. 57, 163, 1983
[46] P.P.Kulish, N.Yu. Reshetikhin, and E. K. Sklianyn, Lett. Math. Phys 5, 393, 1981
[47] I. Affleck,FIELD THEORY METHODS AND QUANTUM CRITICAL PHENOMENA, Les Houches Summer School 1988:0563-640 (QCD161:G65:1988)
[48] P. A. Deift, Integrable operators, in Differential Operators and Spectral Theory, Amer. Math. Soc. Transl., Ser. 2, vol. 189. pp. 69-84, 1999.
[49] A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, Journal Mod. Phys. B, 1003, (1990) bibitemhi J. Harnad, A. R. Its, Commun. Math. Phys. 226 (2002), 497-530
[50] P. A. Deift, A. R. Its, X. Zhou,Annals of mathematics, 146, 149-235 (1997)

