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Entanglement is a resource for quantum computation. How

much quantum effects we can use to control one quantum sys-

tem by another.

OUTLINE

1. Entanglement of two quantum subsystems A and B. Sim-

plest case when the whole system {A,B} is in a pure state:

a unique wave function |ΨA,B〉. Entropy of a subsystem is a

measure of entanglement.

2. The wave function will be a unique ground state of a dynam-

ical model: interacting spins, Bose gas or strongly correlated

electrons. Universal properties of entropy of a large subsystem.
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Easy to explain when entanglement is absent:

|ΨA,B〉 = |ΨA〉 ⊗ |ΨB〉 ⇐⇒ no entanglement

But if the wave function is a sum of several such terms

|ΨA,B〉 =
d∑
j=1

|ΨA
j 〉 ⊗ |Ψ

B
i 〉 entangled.

Here d > 1 and |ΨA
j 〉 are linear independent; as well as |ΨB

j 〉.

Measure of entanglement? C.H. Bennett, H.J. Bernstein,

S.Popescu, and B.Schumacher 1996 entropy of a subsystem :

S = −trA (ρA ln ρA) , ρA = trB
|ΨA,B〉〈ΨA,B|



-8



Contra-intuitive features: Two spins 1/2 forming spin 1.

| ↑〉 ⊗ | ↑〉 no entanglement

but middle component with Sz = 0 is maximally entangled:

| ↑〉 ⊗ | ↓〉+ | ↑〉 ⊗ | ↓〉 maximum entanglement

Entanglement depends on Sz.

Ferromagnetic XXX:

Hf = − L∑
j=1
{σxj σ

x
j+1 + σ

y
jσ

y
j+1 + σzjσ

z
j+1}

σ are Pauli matrices. [Hf , Sz] = 0, Sz =
∑L
j=1 σ

z
j



We can fix Sz to fix ground state uniquely:

Maximum of Sz =
∑L
j=1 σ

z
j



| ↑〉 ⊗ | ↑〉 . . .⊗ | ↑〉 no entanglement.
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We can lower Sz by applying the operator S− =
∑L
j=1 σ

−
j

:

|Ψfm〉 = (S−)M (| ↑〉 ⊗ | ↑〉 . . .⊗ | ↑〉) entangled

Non-trivial magnetization Sz/L if M → ∞ proportionally to

L → ∞. We shall artificially represent the ground state as by

partite system:

Block of spins on an space interval [1, x] is the subsystem A ,

the rest of the ground state is the subsystem B.

Entanglement of a block of spins on a space interval [1, x] with

the rest of the ground state |Ψfm〉.

Density matrix of the block ρ(x) the entropy of the block S(x).

S(x)→
1

2
ln(x), x→∞, F

Double scaling limit 1 << x << L. Salerno and Popkov 2004
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Anti - ferromagnetic XXX:

Haf =
∑
j
{σxj σ

x
j+1 + σ

y
jσ

y
j+1 + σzjσ

z
j+1}

The ground state is unique and has spin 0. Also a gapless case,

but for low lying excitations energy is proportional to momentum

ε ∼ p. So one can use conformal field theory for evaluation of

asymptotic of entropy of a large block of spins, belonging to the

ground state:

S(x)→
1

3
ln(x), x→∞, AF

Holzhey, Larsen and Wilczek 1994. Finite size corrections

S(x) = ln(x)/3 + x0 +
∞∑
j=1

aj/x
j
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Zamolodchikov, Fatteev, Takhatajan and Babujian:

H1 =
∑
n
{Xn −X2

n} spin s = 1

Xn = ~Sn~Sn+1 = SxnS
x
n+1 + SynS

y
n+1 + SznS

z
n+1

Solvable by Bethe Ansatz.

Higher spin s Faddeev 1983:

Hs =
∑
n
F (Xn), F (X)is a polynomial of degree 2s

F (X) = 2
2s∑
l=0

2s∑
k=l+1

1

k

2s∏
j = 0
j 6= l

X − yj
yl − yj

, yl = l(l+1)/2−s(s+1)

The entropy of a block of x spins V.K. 2003:

S (x) =
s

s + 1
lnx, as x→∞
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Other models: Bose gas with delta interaction:

H =
∫
dx

∂ψ†x∂ψx + gψ†ψ†ψψ
 .

Here ψ is a canonical Bose field and g > 0 is a coupling constant.

HN = − N∑
j=1

∂2

∂xj
+ 2g

∑
N≥k>l≥1

δ(xk − xl)

Bethe Ansaz: E. Lieb, W.Liniger in 1963.

The entropy of gas on a space interval [0, x] also scales as

S(x)→
1

3
ln(x), x→∞

V.K, 2004
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The Hubbard model H:

H = − ∑
j=1
σ=↑,↓

(c
†
j,σcj+1,σ + c

†
j+1,σcj,σ) + u

∑
j=1

nj,↑nj,↓

Here c
†
j,σ is a canonical Fermi operator on the lattice [creates

of an electron] and nj,σ = c
†
j,σcj,σ is an operator on number of

electrons in cite number j with spin σ, u > 0. Lieb and Wu in

1968. Below half filling [less then one electron per lattice cite]

both charge and spin degrees of freedom can be described by

Virasoro algebra with central charge equal to 1, Korepin, Frahm

1990 : cc = 1 and cs = 1.

S (x) =
2

3
lnx

V.K. 2004. At half filed band S (x) = (1/3) lnx
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Rényi entropy also scales logarithmically

Sα = 1
1−α ln Tr(ραA) =

1+α−1

6

 lnx

Bai Qi Jin , Korepin 2004
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The entropy of a block of spins for a model with a gap ap-

proaches a constant S∞ as the size of the block increases:

S(x)→ S∞ as x→∞

The Hamiltonian of XY model :

H = − ∞∑
n=−∞

(1 + γ)σxnσ
x
n+1 + (1− γ)σynσ

y
n+1 + hσzn

Here γ is anisotropy parameter: 0 < γ < 1 and 0 < h is

a magnetic field and σn are Pauli matrices. Solution, phase

transitions: Lieb, Schultz, Mattis, Barouch and McCoy. Toeplitz

determinants and integrable Fredholm operators were used for

evaluation of correlation functions,
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The model has three different cases:

1. Case 1a: 2
√
1− γ2 < h < 2. medium magnetic field

2. Case 1b: 0 ≤ h < 2
√
1− γ2 , small magnetic field

3. Case 2: h > 2 , strong magnetic field

A.Its, B.-Q. Jin, V. Korepin 2004: Case 1b

S∞ =
1

6

 ln


k2

16k′

 +

1−
k2

2


4I(k)I(k′)

π

 + ln 2

with k′ =
√

1− k2, and

k =

√√√√√√√√√√
1− (h/2)2 − γ2

1− (h/2)2
I(k) =

∫ π/2
0

dα√
1− k2 sin2α

I(k) is the complete elliptic integral of the first kind:
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I. Peschel 2004: Case 1a: medium magnetic field

S∞ =
1

6

 ln


k2

16k′

 +

1−
k2

2


4I(k)I(k′)

π

 + ln 2,

and in Case 2 : strong magnetic field

S∞ =
1

12

 ln
16

(k2k′2)
+ (k2 − k′2)

4I(k)I(k′)

π

 , (1)

k =



√
(h/2)2 + γ2 − 1 / γ, Phase 1a

γ /
√
(h/2)2 + γ2 − 1, Phase 2

(2)

Consider range of variation: S∞ reaches minimum as ordered

states and it reaches maximum at phase transitions [disordered

states].
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Local minimum S∞ = ln 2 at boundary between cases 1a and

1b: h = 2
√
1− γ2

The ground state is doubly degenerated:

|G1〉 =
∏

n∈lattice
[cos(θ)| ↑n〉+ (−1)n sin(θ)| ↓n〉]

|G2〉 =
∏

n∈lattice
[cos(θ)| ↑n〉 − (−1)n sin(θ)| ↓n〉]

Each state is factorized and has no entropy.

cos2(2θ) = (1− γ)/(1 + γ)

Absolute minimum of is reached at h → ∞ : S∞ → 0 as the

state becomes ferromagnetic ↑ . . . ↑.

These are most ordered states. These is a gap.
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Phase transitions: as the gap closes S∞→ +∞

1. Critical magnetic field: h→ 2 and γ 6= 0:

S∞→ −
1

6
ln |2− h|+

1

3
ln 4γ + O(|2− h| ln2 |2− h|)

2. An approach to XX model: γ → 0 and 0 < h < 2:

S∞→ −
1

3
ln γ +

1

6
ln(4− h2) +

1

3
ln 2 + O(γ ln2 γ)

This agrees with conformal approach of P. Calabrese, J. Cardy

and Toeplitz determinant approach of B.-Q. Jin, V.Korepin.
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Let us consider another gapped spin chain introduced by Affleck,

Kennedy, Lieb, and Tasaki: AKLT model also known as VBS. It

consists of a chain of N spin-1’s in the bulk, and two spin-1/2

on the boundary. We shall denote by ~Sk the vector of spin-1

operators and by ~sb spin-1/2 operators at boundaries.

H =
N−1∑
k=1

~Sk~Sk+1 +
1

3
(~Sk~Sk+1)2

 + π0,1 + πN,N+1.

Notice that 1
2
~Sk~Sk+1+ 1

6(~Sk~Sk+1)2+ 1
3 is a projector on a state

of spin 2. The terms π describe interaction of boundary spin 1/2

and next spin 1; π is a projector on a state with spin 3/2:

π0,1 =
2

3

1 + ~s0
~S1

 , πN,N+1 =
2

3

1 + ~sN+1
~SN

 .
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Ground state is unique and there is a gap:

v v v v v v v v v v v v v v"!
# 
"!
# 
"!
# 
"!
# 
"!
# 
"!
# 

a dot is spin-1
2; circle means symmetrisation [makes spin 1]. A

line is a anti-symmetrisation (| ↑↓〉 − | ↓↑〉) lower joint spin.

Correlation function are: < ~Sx~S1 >∼ (−1/3)x = p(x)

Fan, Korepin and Roychowdhury calculated entropy of a finite

block of spins in the ground state on a finite lattice:

S(x) = 2 + 3(1−p(x))
4 log (1− p(x))−

−1+3p(x)
4 log (1 + 3p(x)) ,

In double scaling limit the expression simplifies:

S(x)→ 2− (3/2)p(x) as x→∞
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D

A

B

C

AKLT construction is universal. Consider Cayley tree: each

lattice site has three neighbors; no loops. Spin at a lattice site

is 3/2. Each dot is spin 1/2, circle is symmetrisation, line is

anti-symmetrisation.
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The Hamiltonian of the AKLT model is

H =
∑

(i,j)
P3(~Si + ~Sj) (3)

P3 is a projector on a joint state with spin 3, and (i, j) are

neighbors on the lattice. The ground state is unique and sim-

ilar to 1D case. Symmetrisation in each lattice cite and anti-

symmetrisation along the links. There is a gap. We calculated

the entropy of a block of spins:
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Figure 1: Cayley tree has no loops. Dotted circle shows the block of spins.

S∞ = number of links necessary to cut to isolate the block.
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Up to now we considered only pure states: unique ground state.

How we measure the entanglement in mixed states?

First in models described by conformal field theory one can cal-

culate the entropy of a block of spins for positive temperature:

S(x) =
1

3
ln


vs

πT
sinh


πTx

vs




V.K. 2003. For large blocks

S(x) =
πTx

3vs
as x→∞

This is second law of thermodynamics. At large temperature the

block of spins strongly interacts with the environment [rest of

the ground state] off-diagonal elements of density matrix van-

ish [de-coherence]. The block turns into a classical system of

macroscopical size. Lot of entropy, but no quantum effects.
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For mixed states entropy of a subsystem is not a measure of

entanglement. What is a measure of entanglement of two quan-

tum subsystems A and B which stay together in a mixed state

{A,B}? We can describe the state {A,B} by a density matrix

ρA,B. In 2001G. Vidal and R.F. Werner suggested negativity as

measure of entanglement. Recall that ρA,B is a positive matrix.

But partially transposed ρ
TA
A,B does not have to be positive. A

measure of entanglement of two quantum subsystems A and B

in a mixed state {A,B} is negativity:

NA,B = | ∑
negative eigenvalues of ρ

TA
A,B|

Vidal and Werner proved that it vanishes for unentangled states.

NA,B does not increase under LOCC.
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Negativity does not increase under local manipulations of the

system. It provides a bound on the teleportation capacity and

on the distillable entanglement of mixed states. Negativity can

be used to quantify a degree of entanglement in mixed systems.

Sometimes logarithmic negativity also used

E = log2 (2N (ρ) + 1)
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SUMMARY

The entanglement has to be measured differently for pure and

mixed states. Entropy of a subsystem measures entanglement

at zero temperature only. In double scaling limit it shows univer-

sality. For gapped models entropy of a subsystem is proportional

to the area of the boundary. In 1D many gapless models can be

described by conformal field theory. Still one should be careful,

for some gapless models ε ∼ p2, then the entropy also scales

logarithmically but the coefficient is different. Analysis of en-

tropy helps to find most ordered states.
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