
Topological Entanglement Entropy
from the Holographic Partition Function

There are very deep connections between topological states in 2+1 dimensions, chiral

conformal field theories in 1+1 dimensions, and quantum impurity problems.
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Outline:

1. Entanglement and quantum dimension

2. Topological entanglement entropy

3. The edge

4. Holographic partition functions

5. Disentanglement by a point contact

work with Matthew Fisher and Chetan Nayak
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The setting:

Quantum states in two dimensions with gapless chiral edge modes.
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Simple examples are Laughlin quantum Hall states, where the edge modes are described

by free chiral bosons in 1+1 dimensions.

The two key examples for this talk are:

• a px + ipy superconductor

Read and Green; Ivanov; Stern et al; Chung and Stone

• the Moore-Read state for the ν = 5/2 fractional quantum Hall effect

For field theorists: think Chern-Simons theory on a disk× time.
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With pure enough samples:

data from Pan et al
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The only theory of the 5/2 plateau consistent with the data and the numerics predicts

charge e/4 particles with non-abelian statistics.

Moore and Read

If you could manipulate these quasiparticles, you could build a topological quantum

computer.

But that’s another talk...
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A convenient way of labeling the excitations of such theories is by topological sector.

In the Hall effect, this is mod an electron. Any states which are related to each other by

adding an electron or hole are identified.

Thus e.g. for the ν = 1/3 abelian Laughlin state, the three sectors are labeled by the

charges 0, 1/3,−1/3.
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The sectors for the p + ip superconductor are

• I (the electron in the MR state)

• ψ (neutral fermion)

• σ (the interesting one!)

in p + ip this creates a vortex

For Moore-Read, one must include (abelian) charge degrees of freedom as well.
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Non-abelian statistics means that the system changes state when quasiparticles are

brought around each other.

For this to be possible, there must be degeneracies in multi-quasiparticle Hilbert spaces.

These degeneracies can be found from the fusion rules.
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For p + ip or ν = 5/2, the non-trivial fusion rule is

σ · σ = I + ψ

There are two possible quantum states for two σ particles, no matter how far apart they

are.

Entanglement!
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The full set of fusion rules for p + ip is

σ · σ = I + ψ

σ · ψ = σ

ψ · ψ = I

The only time there is more than one thing on the right-hand-side is for σ · σ.
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The fusion algebra allows us to count the number of quantum states for 2N

quasiparticles:

σσ σ σ σ σ σ σ σσ σ

Ι,ψ Ι,ψ Ι,ψ Ι,ψΙ,ψ

There are thus 2N states for 2N quasiparticles.

The entropy per particle is
ln(# of states)

2N
= ln(

√
2)

12



The quantum dimension of σ is

dσ =
√

2

The quantum dimensions of the other fields are dI = 1, dψ = 1.

Non-abelian statistics is possible only when d > 1.
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Topological entanglement entropy

The von Neumann entropy measures the entanglement between two subregions of a

system. On general grounds, for a gapped and local theory in two dimensions this grows

as the length L of the boundary:

SV N = aL− γ + . . .

In a topological state this subleading piece is universal and very interesting.
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The (universal part of the) topological entanglement entropy of a disc with no bulk

quasiparticles is

−γ = − lnD
whereD is the total quantum dimension

D =
√∑

(da)2

Kitaev and Preskill, Levin and Wen

The sum is over all the topological sectors (i.e. in the FQHE, all sectors mod an electron).

15



For the ν = 1/3 Laughlin state:

D =
√

(d0)2 + (d1/3)
2 + (d−1/3)

2

=
√

12 + 12 + 12

=
√

3

For p + ip:

D =
√

(dI)2 + (dψ)2 + (dσ)2

=
√

12 + 12 + (
√

2)2

= 2

16



Say we insert a point contact in the middle. In the field theory, this is a relevant

perturbation. Thus if the temperature is low or the gate voltage high, the system is

effectively split into two.

Without the point contact (and no bulk quasiparticles), γUV = − lnD.

In the IR, the system has split into two discs, so γIR = −2γUV .

Thus we have an entropy loss:

γUV − γIR = −γUV

A point contact causes disentanglement!
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But what is being disentangled?
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The edge

In these theories, bulk excitations are gapped, but edge modes are gapless (c.f.

Chern-Simons theory).

The edge excitations for p + ip are described by the Ising chiral conformal field theory.

For the Moore-Read quantum Hall state, the edge theory is a chiral Ising field theory and

a free chiral boson.
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The chiral Ising edge has three kinds of excitations, labeled by the identity I (no

excitation), the edge fermion ψ, and the spin field σ.

The correspondence with the bulk excitations is not a coincidence.

Deser, Jackiw and Templeton; Witten

The meaning of the fusion rule in chiral CFT is that the operator product expansion of two

σ fields contains both the identity field I and the fermion ψ.
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Our result: the topological entanglement entropy of the full theory can be encoded in the

thermodynamic entropy of the edge modes.
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Let’s consider the interplay between edge and bulk.

The edge is a circle of circumference R. Which bulk quasiparticles are present

determines the boundary conditions on the edge modes around the circle.

When there are no bulk quasiparticles, the edge modes in p + ip are those of a free 1+1

dimensional chiral fermion with antiperiodic boundary conditions around the circle.

When there is a single σ quasiparticle in the bulk (i.e. a single vortex in p + ip), the

boundary conditions change to periodic.
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We obtain the entropies from the chiral partition function of the edge modes

χ0 = tr e−βH

whereH is the Hamiltonian of the edge modes, and β the inverse temperature.

In the corresponding conformal field theory, this is called a character, and is a standard

computation.

For no bulk quasiparticles in p + ip, we label the (Ising) character as χ0.

For a single σ quasiparticle (i.e. a vortex), we label it χσ .
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In general, let χa be the chiral CFT character for primary field a. When the bulk has na

particles of each species a, the holographic partition function is defined as

Z =
∑

a

naχa

The 1+1d system here is a purely chiral CFT with space a circle.

This is reminiscent of Cardy’s approach to boundary CFT. However, since the 1+1d

system is an edge, it can have no boundary!
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To extract the entropies from the holographic partition function, we take the limit of a large

disc R/β →∞ before we take the temperature to zero.

The interesting piece S is subleading:

ln(Z) = fR/β + S

We showed by direct computation for a general rational conformal field theory that S is

the topological entanglement entropy!
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Finding Z and S is purely an edge computation. The only input from the bulk are the

boundary conditions, which in turn depends only on the number of each type of

quasiparticle present.

The topological entanglement entropy has two kinds of contributions:

S = Sbulk + Sedge

Both are independent of the size of the system: they are subleading terms in the full

entropy.
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The “bulk” part arises from the degeneracies of the 2+1d bulk quasiparticles.

For two σ quasiparticles, Sbulk = ln(2). For n of them, Sbulk = (n/2) ln 2.

In general, for na bulk quasiparticles of type a

Sbulk =
∑

a

nada

where da is the quantum dimension, which is not necessarily an integer!

The “edge” part arises from the 1+1d edge modes. As before,

Sedge = − lnD
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This partition function is very useful for understanding the effect of a point contact.

Without the point contact:

After the point contact (a relevant perturbation):
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S is simply the g-function of Affleck and Ludwig!

In this context, Sedge + Sbulk is often referred to as the “ boundary” entropy. The point

contact is the boundary of a boundary!

The entropy lost in the flow is the entanglement entropy of the edge modes on the two

halves.
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This still works when we include bulk quasiparticles.

σ

SUV = ln(dσ)− ln(D) = ln(
√

2)− ln(2)

σ

SIR = ln(dσ)− 2 ln(D) = ln(
√

2)− 2 ln(2) = SUV − ln(2)

30



σ σ

Because σ · σ = I + ψ, there are two channels possible. The “bulk” entanglement

entropy is ln(2), so

SUV = ln(2)− ln(D) = 0

σ σ

SIR = 2 ln(dσ)− 2 ln(D) = 2 ln(
√

2)− 2 ln(2) = SUV − ln(2)
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But what if the bulk quasiparticles are in different places?

σ σ

The UV is identical:

SUV = ln(2)− ln(D) = 0

σ σ

SIR = ln(2)− 2 ln(D) = − ln(2) = SUV − ln(2)

The same change in entropy!
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At the level of the partition functions:

σ σ

Because σ · σ = I + ψ,

ZUV = χI + χψ

Taking the disk large gives the correct SUV = 0.
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In the IR, the two halves are independent, so the partition function is the product of the

two individual ones.

σ σ

ZIR = (χσ)2

σ σ

ZIR = χI(χI + χψ)
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To prove this result in general, use conformal field theory.

A modular transformation involves changing the roles of space and Euclidean time, i.e.

the radius R of the disk with the inverse temperature β.

The modular S matrix (not to be confused with the Kondo spin ~S or the entropy S)

relates the chiral partition functions:

χa(R, β) =
∑

b

Sb
aχb(β,R)
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The fusion coefficients are the integers which encode the fusion rules, e.g.

N I
σσ = Nψ

σσ = 1. The Verlinde formula relates them to S for any rational conformal

field theory

N c
ab =

∑

j

Sj
aSj

bSc
j

Sj
0

The original proof is by Moore and Seiberg; Cardy gives a nice proof using boundary

conformal field theory.
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Define the matrix Qa, whose elements are

(Qa)b
c ≡ N c

ab

Think of Q as the matrix which fuses one quasiparticle a with a particle c to get

quasiparticles b.

The quantum dimension da is the largest eigenvalue of Qa.

Using the Verlinde formula gives

da =
S0

a

S0
0

and by the unitarity of the modular S matrix

D = 1/S0
0

Cardy, Affleck and Ludwig
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In general, the degeneracy of channel c when there are na of the ath type of

quasiparticle is the c, 0 entry of the matrix T

T =
∏
a

(Qa)na

The channel c has quantum dimension dc.

The bulk entropy in general is therefore

Sbulk = ln(
∑

c

T0cdc)
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one finds exactly

S = − lnD + ln(
∑

c

T0cdc)

= Sedge + Sbulk

This is holographic: the (subleading) piece of the 2+1d bulk entropy is given entirely in

terms of 1+1d CFT character!
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For the Moore-Read state, we must include the chiral charge boson ϕc. There are now

six quasiparticles:

• I (identity/electron)

• σe±iϕ/(2
√

2) (charge±1/4)

• ψ (neutral fermion)

• e±iϕ/
√

2

These are the six primary fields of the (Neveu-Schwarz sector of) theN = 2
superconformal algebra with c = 3/2. Milovanovic and Read
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These have quantum dimensions

1,
√

2,
√

2, 1, 1, 1

giving

DMR = 2
√

2

Changing the radius of the charge boson gives different Moore-Read states. This of

course changes the total quantum dimension. For the SU(2)-invariant bosonic

Moore-Read state,

DSU(2)2 = 2
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Lots of details and more results in our papers.

The entire flow due to a point contact can be mapped

• onto the anisotropic Kondo problem (p + ip superconductor)

• onto a variant of the two-channel Kondo problem (Moore-Read)

The connection between 2+1-dimensional topological states and 1+1 dimensional

conformal field theory and integrability is a deep one!
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