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Kitaev’s proposal (quant-ph/9707021)

1)Physical operators coupling the

computer to its environment are

local

2)Different internal states used

for computation should be:

• macroscopically different

• perfectly degenerate, even in

the presence of environmental

noise

3)computer should be a large sys-

tem, of which only a small number

of eigenstates are used for compu-

tation.

“Topologically protected”

subspace

M M ∆
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Constraints on system-environment coupling

L21 . . .

Environment-induced splittings in protected subspace

∆E ≃ M

(

M

∆

)L

Can be very small if L is large, provided M
∆ < 1

So we can’t use environment to distinguish states

in the

protected subspace
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Assume [H, Pi] = [H, Qj] = 0

P2
i = 1, [Pi, Pj] = 0

Q2
i = 1, [Qi, Qj] = 0

{Prow, Qcolumn} = 0

Can diagonalize simultaneously:

P1, P2, ..., PM , Q1Q2, ..., Q1QN

Gives only two-dimensional irre-

ducible representations!

1)Start with | ↑〉, such that:

Pi| ↑〉 = αi| ↑〉
Q1Qj| ↑〉 = βj| ↑〉

2)Define | ↓〉 as:

| ↓〉 = Q1| ↑〉
3)| ↓〉 satisfies:

Pi| ↓〉 = −αi| ↓〉
Q1Qj| ↓〉 = βj| ↓〉

4)Furthermore:

Qj| ↑〉 = βj| ↓〉



Doublets exist as long as one can find at least ONE pair Pi, Qj,

commuting with H.

Example of a static disorder configuration which does NOT lift

any degeneracy!

Q

P

N N N N N

N

N

N

N

N

N

N N N

N N N

N N N

Local noise breaks degeneracies only at high orders (M , or N)

in perturbation theory!
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Important example

Local noise operators Nij such that they commute with all

Prow’s and Qcolumn’s, with the exception of:

{Nij, Qj} = 0

Nij|{α}, {β}, τ〉 = |{α}, β1, ...,−βj, ..., βN , τ〉
Ni1|{α}, {β}, τ〉 = |{α},−β1, ...,−βj, ...,−βN , τ〉

1)This noise induces no transitions inside the doublets

(τ is conserved):

−→ No relaxation!

2)Degeneracies are lifted only at order N or larger:

−→ dephasing rate is exponentially small!
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Example: X-Z Ising model Douçot, Feigel’man, Ioffe, Iosele-

vich, P. R. B. 71, (2005)

H = −Jx

(h)
∑

〈ij〉
σx

i σx
j −Jz

(v)
∑

〈ij〉
σz

i σz
j

Conservation laws

Prow =
∏

r∈row

σz
r

Qcolumn =
∏

r∈column

σx
r

P2
i = 1, [Pi, Pj] = 0

Q2
i = 1, [Qi, Qj] = 0

{Prow, Qcolumn} = 0
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Numerical diagonalizations
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Main question: how does energy

gap depend on Jx, Jz, M , N ?

Seems to close exponentially with

system size

Dorier, Becca, and Mila, P. R. B 72,

024448, (2005)

−→ One should work with a rela-

tively small array, that is M, N ≃ 5
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Effect of quenched disorder

Hdis =
∑

r
hz

rσ
z
r + hx

rσx
r

Random field hz
r ∈ [−0.05,0.05],

hx
r = 0
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Ln
 (E

1- E
0)




N=5*5

N=4*4

All states are doubly-degenerate, in a way largely

unsensitive to noise from environment
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Basics of Josephson junction arrays

φj; local phase of Cooper pair

condensate

n̂j = ∂
i∂φj

: number of Cooper pairs

on island j

∆φj∆nj ≃ 2π

Aij =
2π

Φ0

∫ j

i
~Aij.d~r

Example of a square array:

ϕ i

H = −EJ

∑

〈ij〉
cos(φi − φj − Aij) +

EC

2

∑

ij

(C−1
ij )n̂in̂j

EJ: Josephson coupling energy EC: Charging energy
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A rhombus with half a flux quantum

Define θij = φi − φj − Aij, then:

θ12 + θ23 + θ34 + θ41 ≡ π, mod 2π

→ Get two-fold degenerate classical ground-state, with θij = ±π
4

→ Quantum fluctuations (EC 6= 0) of phases lift this degeneracy

1

2

3

4

1

2

3

4Quantum

Tunneling
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Single chain of rhombi: Josephson energy

∆φn = −π

2
σz

n

−π

2

N
∑

n=1

σz
n ≡ π

2

N
∏

n=1

σz
n−

π

2
(N+1) [2π]

Boundary condition:

φR =
π

2

N
∏

n=1

σz
n − π

2
(N + 1) + φel

Classical ground-states for a

rhombus:

ϕ
R

∆ϕ=−π/2

∆ϕ=π/2

Heff,J =
c(N)

2



φR − π

2

N
∏

n=1

σz
n +

π

2
(N + 1)





2
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EJ

φ
R

ππ/2−π/2−π

Josephson energy in the classical

limit:

The two colors correspond to the

parity of
∏N

n=1 σz
n

(even,odd)
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Effect of quantum fluctuations on low-energy spectrum

If Ec
EJ

not very small, single rhombi

can flip, with tunneling amplitude:

b ≃ (E3
JEc)

1/4 exp(−1.61

√

EJ

Ec
)

Elementary flips:

ϕ
R

ϕ
R

ϕ
R

ϕ

n

ϕ

n

ϕ

n

+π

−π
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Model Hamiltonian for low-energy spectrum

CONSTRAINT: φR = π
2

∏

n σz
n − π

2(N + 1) + φel

Introduce translation operator T such that T |φel〉 = |φel + π〉:

Heff = −a(N)

(

∑

n
σx

n

)2

− b(N)

(

∑

n
σx

n

)

(T + T †) +
c(N)

2
φ2
el

Keeping only two lowest branches in Josephson energy

Heff = −a(N)

(

∑

n
σx

n

)2

−b(N)
∑

n
σx

n+
c(N)

2



φR − π

2

N
∏

n=1

σz
n +

π

2
(N + 1)





2

Spectrum depends only on Σ = |∑n σx
n|
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Comparison between effective model and numerical

diagonalizations

EJ/Ec = 6 EJ/Ec = 4

E±(Σ) = a(N)Σ2+
c(N)

2
(φR+

π2

4
)±

(

b(N)2Σ2 + (
π

2
c(N)φR)2

)1/2
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Non-local symmetries in the low-energy sector

Introduce τz, such that φR = π
2τz − π

2(N + 1)

(Global qubit state)

Heff = −a(N)

(

∑

n
σx

n

)2

− b(N)
∑

n
σx

n +
π2

4

c(N)

2





N
∏

n=1

σz
n



 τz

P = τz

Qn = σx
nτx

Effet of local noises: HN =
∑

n hz
nσz

n + hx
nσx

n

hx
nσx

n preserves P and Qm −→ No degeneracy lifting

hz
nσz

n preserves P and Qm, m 6= n, but anticommutes with Qn

−→ Degeneracy lifting, but at order N in perturbation theory!

18



Effect of static perturbations (1)

Offset charges and local variations of EJ do not lift doublet

degeneracy provided N is odd

Proof: for N odd, total phase variation across the chain is ±π
2.

So one goes from τz = 1 to τz = −1 by changing all local

phases φr into −φr.

This operation commutes with Josephson energy

−∑

〈r,r′〉 EJ,rr′ cos(φr − φr′ − Arr′) because for half-flux

quantum/rhombus, we may choose Arr′ ∈ {0, π}.
To preserve the charging energy (in the presence of offset

charges), we need to preserve n̂r = ∂
i∂φr

, so the desired

operation reads:

Ψnew(φ1, ..., φ3N+1) = Ψ̄(−φ1, ...,−φ3N+1)

Remark: for N even, these perturbations lift doublet

degeneracy only at order N .
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Effect of static perturbations (2)

Effect of area variations −→ Φ 6= Φ
Φ0

in a given rhombus.

−→ lifts degeneracy between opposite chiralities

∆Heff =
∑

n
hnσz

n

hn ≃ ∆Φn

Φ0
EJ ∼ 0.01EJ

By choosing Ec not too small, we can get |hn| < ∆

Numerical results for N = 3:

∆

EJ
≃ 0.03 (EJ = 6Ec)

∆

EJ
≃ 0.1 (EJ = 4Ec)

Remark: here again, this perturbation lifts doublet degeneracy

only at order N .
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Read-out

Requires moving the system out of topologically protected

subspace

Can be either destructive (critical current measurement) or non

destructive (ac impedance measurement)

Measuring τz

Apply a small uniform magnetic field, which lifts degeneracy

between τz = ±1. This has to be applied fast compared to the

inverse qubit splitting, and slowly compared to the inverse gap

∆−1.

The two states are now macroscopically distinct.
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Implementation with trapped ions

Interactions along rows Interactions along columns

with T. Coudreau, P. Milman, and L. Ioffe
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Getting large coherence time with trapped ions I

Coherence time (1.05 s) is limited by finite lifetime (1.17 s) of

metastable D5/2 level of 40Ca+ ions.
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Getting large coherence time with trapped ions II
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Decoherence-free subspaces

1 qubit

2 qubits
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Phonon-mediated long-ranged spin coupling

The Sørensen-Mølmer process Effective interaction

Jeff = (ηΩ)2/|ν − δ|
Ω: Light intensity (Rabi fre-

quency)

η: Photon energy/recoil energy

ν: Phonon frequency

δ: detuning of the main transition
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Constraints for pratical implementation

Wish to maximize Jeff, because energy gap has to be larger than

main source of noise, likely to be due to laser frequency noise,

typically δf ∼ 500Hz

Weak coupling: ηΩ < |ν − δ|, so Jeff < ηΩ, but:

One has to couple only to one phonon mode: ηΩ < ∆ν

In one dimension: ∆ν = (
√

3 − 1)ν

In two dimensions: (5 × 5 array): ∆ν ≃ 0.1ν

Increasing ν decreases the distance between ions

Optimal size seems to be N ≤ 3 (1D) or N ≤ 5 (2D)
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Folding a square onto a line

A 3 × 3 array

11 12 13

21 22 23

31 32 33

(a)

And its one-dimensional version

1 32 4 5 6 7 8 9

1 32 4 5 6 7 8 9

(c)

(b)
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Long range interactions help, because they induce larger gaps!

2 × 2 3 × 3 4 × 4 5 × 5

SRI 0.84 0.58 0.32 0.20
LRI 0.84 0.96 0.92 0.80
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Estimates for decoherence time

4 ions 9 ions 5 × 5 ions

Γeff (Hz) 1.5 · 10−3 7.5 · 10−5 1.9 · 10−11

τ(s) 6.6 · 102 1.3 · 104 5.3 · 1010
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Conclusions

1) Ground-state degeneracies occur in the presence of

non-local symmetries and are protected against local noise

terms to high order ∼ L in perturbation theory.

2) Experimental realization of small Josephson junction arrays

with such non-local symmetries has just started, at Rutgers

university and Grenoble.

3) Possible implementation in ion traps.

Related subjects

1) Possibility to simulate lattice-gauge theories based on finite

groups G using Josephson junction arrays.

2) Low energy excitations in these models are anyons, whose

braiding properties may be used in designing quantum gates.
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