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Mutual influence of small quantum
systems

Coupling of several qubits: achieved through an intermediate

system
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Quantum Coax.

Qubit 1 Qubit 2

Main problems: Mutual influence through the “quantum bus” ?

Correlations and dynamics of the two qubits ?

Introduction and motivations



Cavity QED
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Jaynes-Cummings hamiltonian: valid for § << @, 0, , ie. for P <K 1
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Quantized mode 2-level system dipolar coupling

Master equation for the qubit + cavity system:

Strong coupling: & > K,V

dp l . . .
= [H IC, p] + Z L(p) Atom / mode interaction dominates
dt h a dissipative processes.

Dissipation terms (Markovian)

Introduction and motivation



Experimental realizations of cQED

Josephson qubits in superconducting
resonators

Rydberg atoms in superconducting
cavities

to Detectors

Micropillars and photonic bandgap
cavities

Introduction and motivation

Single atoms in optical cavities



Beyond quantum optics cQED

Quantum optics

Higher modes can usually be neglected

Main interest: quantum state preparation, evolution and measurement
Notable exception: non linear quantum optics

Condensed matter physics

Qubit / cavity optimization: leads to higher values of the coupling !
Nanomechanics: achieves the super-strong coupling regime

Our work: other systems also correspond to the original cQED problem

(1D cavity + two level system), mapping on a double quantum impurity
problem.

Europhys. Lett. 68, 37-43 (2004)
with S. Camalet, J. Schriefl and F. Delduc

Introduction and motivation



Three different mesoscopic systems...

Two qubits coupled to a transmission line

Wires and dots system
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Double one channel, spin 1/2 Kondo problem

The double Kondo model in mesoscopic physics



are described by the double Kondo model

Bosonic field on a finite line

2/ T + 7(9,D)?) dx

Circuit QED: double spin-boson
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The coupling constant determines the

dimension of the boundary operator.

The double Kondo model in mesoscopic physics



Fixed charge condition

The charge stored in the red dashed box 1s conserved
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Josephson qubits Josephson qubits in a resonator



From devices to double Kondo

Qubits Resonant levels Kondo
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The double Kondo model in mesoscopic physics



Strategy

Non perturbative approaches Perturbation theory B*<m

TBA & Destri - De Vega eqs can be used to | No Ir divergences (finite size)

compute thermodynamical quantities. UV convergence: Ay(eP®?) =p?/n
(| | ] >
L [ >
Jaynes Cummings model Toulouse point
Coupling to a single mode & RWA Fermionic solution can be used to

Add dissipation: cavity relaxation, qubit compute thermodynamics and dynamics.

relaxation & dephasing

Phys. Rev. A 74, 033802 (2006) Europhys. Lett. 68, 37-43 (2004).
Preprint arXiv:0704.3489

The double Kondo model in mesoscopic physics




Reflexion matrices and influence lengths

Fermionic Fabry-Perot cavity
Stationary wave condition for bouncing fermionic i / 3
excitations >
1 4 XKL= R (K)R_1 (k) = 0 <
Reflexion matrices: Ri(k) = Z_ Z n ;z; €~ () Jak?
kj = B%/hv

The Kondo energy scale

Each quantum impurity introduces an energy scale at the boundary
which gives a length scale §;=1/q;
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Represents the influence zone of each quantum impurity (Kondo cloud).

Non perturbative approach




Ground state energy
from boundary field theory

Boundary field theory .
VE

. < >
Each boundary created correlated pairs of
excitations (Cooper pairs). -

> B(oLk)>

For L > hv/kgT , Cooper pairs do not overlap:
the two qubits do not influence each other. < —

Free energy at T=0 (ground state energy)

Computation of the scalar product of boundary states (

).

Free fermion point: Chatterjee contour integral method (

).

Non perturbative approach



Ground state energy from
boundary field theory

General structure at vanishing temperature:

log (Z(B)) = —Pr (LEbulk‘|’Ea + hO[(ajjkj)j]) ~ —PrEo

Explicit result:
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Bulk contribution Boundary contribution Universal contribution

where X (k) = ¢ * =) Ro (k) R_ (k)

Mutual influence effects are contained in the logarithmic integral.

Non perturbative approach



Analyticity issues

The logarithmic formula computes the ground state energy in the grand
canonical ensemble whereas the fixed charge condition means that we are
working in the canonical ensemble.

Grand canonical ensemble: change of A
vacuum when a one-particle energy level
CroSSes Zero. .
n+1
_/
>

Canonical ensemble: we musk keep the same

one-particle energy levels occupied. et //://,/

Solution: the logarithmic formula should be
supplemented by an analiticity requirement.

Non perturbative approach



Maximum correlation

At fixed Kondo lengths, look for the

maximum correlation by varying other

parameters

1

4(1+L/8o)

ax

For .1 >L

Large clouds

S RERE8
R
SR
O e
e
XX
0t 000 e e
SRR
L LRI
BB
S
B
R
- SSESBBN
XA
S
Q5
K85
9

Question: when are the correlations maximal in term

of other parameters ?




Populations and correlations

Large Kondo clouds S =&-.=200L
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Fermionic one particle energy

2 levels

+ X : : .
Maximum correlation correspond to maximal
2eB({(N) +x) = ZC;J' )Vg(j ) hybridization betweeen the line and the impurities.

J
VoL =1.2hv

Exhaustion criterion of Noziéres.




Physical picture

Small Kondo clouds Large Kondo clouds
&< L &> L
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Correlations emerge when the same
degrees of freedom of the line
participate to the Kondo cloud
(exhaustion criterion)

Very weak correlations between the
quantum impurities.

Efficient screening.

This picture should be valid generally.
- Results



Conclusions and perspectives

Conclusion

Description of three mesoscopic double quantum impurity problems
by the double Kondo model.

Exact solution at its Toulouse point (non trivial analyticity issues).

Identification of two different regimes (Kondo and cavity regimes).
Role of Kondo lengths scales.

Perspectives

Exact solution at other points (TBA, Destri-DeVega egs.).
Introduction of dissipation at the Toulouse point.

Real time dynamics at the Toulouse point (forced mesoscopic
systems).

Conclusion and perspectives



The end. |ii@

Thanks a lot for your attention.




Circuit QED with two end qubits

Two qubits coupled to a transmission line ~ v=1/vLC R=+/L/C
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Double spin boson model with transmission line

Josephson qubits Josephson qubits in a resonator



A mesoscopic Kondo problem
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Magnetic impurities: two spin 1/2 coupled to local fields along z

A
Y

Quantum wire of finite length with spin 1/2 electrons (gapless spin
degrees of freedom).

Anisotropic exchange interaction between electrons and impurities

H;=J{S;S () + 858 ())} +J385.57())

The double Kondo model in mesoscopic physics



Quantum dots and wires

Tunneling between a quantum wire and two resonant levels

t g t,
Quantum wire Ve -~ -= e V,
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Edge states (chiral) Ve -~ ( 27y ) 2. Vv,
VF
Luttinger liquid for spinless electrons ( )
Interaction parameter 1L utt

Renormalized Fermi velocity  vr

Tunneling between and infinite wire and one resonant level

The double Kondo model in mesoscopic physics



Large Kondo clouds
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Study of the double Kondo model Results

Populations and correlations
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