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Ingredients for fractionalization in Polyacetelene

® Polyacetylene has two Fermi points. (The rule in 1D but exceptional in 2D.)

® A perturbation couples the two Fermi points, opening a single-particle gap at the
Fermi energy and stabilizing a bond density wave (BDW) state.

® There are two degenerate BDW states associated to the spontaneous breaking
of a Z, symmetry.

@® There are solitons that interpolate between the two degenerate BDW states.

® There are single-particle states at the Fermi energy in the background of the
soliton.

®The fractional charge is calculated as the difference between the local single-
particle density of states with and without the soliton.
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Ingredients for fractionalization in the QHE

® Time-reversal symmetry is explicitly broken by an external field.

® The Laughlin state is an incompressible quantum liquid that does not
spontaneously break any symmetry, and has has a quantized Hall conductance.

The ground state degeneracy depends on the genus of surface, and
cannot be lifted by local perturbations: Wen’s quantum topological order.




Polyacetelene vs. Quantum Hall Fluids

Two different beasts!

Fractionalization in Polyacetylene (Rebbi and Jackiw 1976, Su, Schrieffer, and
Heeger 1979)

@ holds at the single-particle level in the background of some texture

@ that breaks spontaneously a symmetry

® and was believed to be special to 1D.

Fractionalization in the FQHE (Laughlin 1983, Halperin 1984, Wen 1990)
@ is a many-body effect

@ built on the emergence of quantum topological order.

The notion of quantum topological order has played an essential role in attempts
to identify examples of quantum-number fractionalization in space larger than 1D




Taxonomy of fractionalization

| D: Spontaneous symmetry breaking
2D:Topological order

s this really correct!?

Example of fractionalization in 2D via
spontaneous symmetry breaking!

Irrational vs. Rational charge and statistics in 2D




3 steps for 2D fractionalization “a la Polyacetelene”

® We seek a model for non-interacting electrons in 2D with two Fermi points.

® We need to open a gap by spontaneously breaking a symmetry.

@ Topological defects on the textured background seen by the electrons.




Step |:two Fermi points

Systems where the valence and conduction band touch at two points in
the Brillouin zone: Ex. square lattice n-flux phase and graphene

Bipartite lattices A and B - hopping between these

H = — Z Zti aibr—l—si + H.c.
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Low energy effective Hamiltonian

Two independent massless Dirac fermions correspond to two valleys. At half-filling,
the Fermi energy is at zero energy -- two Fermi points.

Effective Hamiltonian: H = /d2'r' lI’T(*T') Kp(r) ¥(r)
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1, and v, correspond to the different valleys, K + respectively. The subscript
a and b represent the sublattice A and B, respectively.




Step |l: opening single-particle gap

CDW
(staggered chemical potential):
Does not couple Dirac points
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The hopping texture leading to A:

3
Kekule Distortions: H=- Z Z (t + &T,i) a;r.b,.ﬂi + H.c.
rEA 4 1=1




Step lll: topological defects and zero modes
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Same equations for zero modes were solved in two different contexts:

{) When coupling a charge q scalar Higgs field to gauge fields carrying a flux of n/q in
2D (Jackiw and Rossi 1981)

() For mid-gap states in a 2D p-wave superconductor (Read and Green 2000)

Charge is not a conserved quantum number in both cases.

Here it is: quantum numbers must be good (and behave well!) to be
fractionalized!




1. n>0:nnormalizable zero modes at sub-lattice B
2. n<0:nnormalizable zero modes at sub-lattice A

==P Only one Zero mode for |n|=1 Case

For n=-1:

u, o Expl- [ (:dr’AO(r’)] , v 0) = u, (r 6)




Electron fractionalization

Spectrum Without the Vortex
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Electron fractionalization

—

Mirror Symmetry
respect to E=0 /
(Particle-Hole Sym) /HQIL

Spectrum Without the Vortex Spectrum With the n=1 Vortex

Half-filling (E;=0): Filled and unfilled zero mode has the same energy
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Unfilled State: Charge e/2 filled State: Charge -e/2

Has 1/2 fewer filled state Has 1/2 more filled state
compared to the no-vortex compared to the no-vortex
background. background.




Irrational vs. rational charge
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Back to massive Dirac equation:
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On the lattice:

Masses Axial vector potential

Aqo(or mng 2) A?,Q




What is the induced charge for a mass twist?
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Continuously varying charge (irrational)




In the presence of the axial flux:
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Charge re-rationalizes




Numerical check on the n-flux square lattice:

(a) (b)

0.025 0.05 0.075 0.1
uy/t




Irrational vs. rational statistics




Square the Dirac Hamiltonian:

Haldane mass for graphene
breaks TRS

Uniform vector rotates: Berry phase

Voot (M) = 27 sin? 5

Weighted by density:
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Vo= / d2r j, (r) 27 sin® ¢(2r>

/—27rsm = =71 Q%(u,)




Summary

@® Fractionalization in 2D via spontaneous symmetry breaking
@® Irrational charge and exchange statistics
® Deconfinement with an axial half-vortex: re-rationalization

charge 1/2 and half-semion (6/7=1/4) statistics










