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Entanglement Entropy: what is it?

Quantum system in the ground state |Ψ〉
The density matrix is ρ = |Ψ〉〈Ψ|
(Trρn = 1)

Alice measures a subset A, Bob the remainder B:
Reduced density matrix ρA = TrBρ (ρB = TrAρ)
Entanglement Entropy ≡ Von Neumann entropy of ρA:

SA = −Tr ρA ln ρA

Note: SA = SB if ρ corresponds to a pure state

What is the meaning of SA?

It is the amount of information that A and B are shearing
The amount of quantum correlations between A and B
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Area law and criticality

Area Law: SA ∝ A [Non extensive]

Srednicki ’93
↓

(lots of works)
↓

Wolf et al ’07

Only in gapped systems

Holzhey, Larsen, Wilczek ’94: In a 1+1D T = 0 CFT

SA =
c

3
ln

`

a

Vidal, Latorre, Rico, Kitaev ’03: QI perspective

Extensive review by Amico et al. [quant-ph/0703044]
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Entanglement Entropy and path integral

Lattice QFT in 1+1 dimensions: {φ̂(x)} a set of fundamental fields with
eigenvalues {φ(x)} and eigenstates ⊗x |{φ(x)}〉
The density matrix at temperature β−1 is (Z = Tr e−βĤ)

ρ({φ1(x)}|{φ2(x)}) = Z−1〈{φ2(x)}|e−βĤ |{φ1(x)}〉

Euclidean path integral:

ρ = =

Z
[dφ(x , τ)]

Z

Y
x

δ(φ(x , 0)−φ2(x))
Y
x

δ(φ(x , β)−φ1(x)) e−SE

SE =
R β
0 LE dτ , with LE the Euclidean Lagrangian

The trace sews together the edges along τ = 0 and τ = β to form a cylinder of
circumference β.
A = (u1, v1), . . . , (uN , vN): ρA sewing together only those points x which are
not in A, leaving open cuts for (uj , vj) along the the line τ = 0.

ρA = =

Z
x∈B

[dφ(x , 0)]δ(φ(x , β)− φ(x , 0))ρ
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Replica trick

SA = −TrρA log ρA = − lim
n→1

∂

∂n
Trρn

A

Trρn
A (for integer n) is the partition function on n of the above

cylinders attached to form an n−sheeted Riemann surface

=“ρij
Aρjk

A ρkl
A ρli

A”

Trρn
A has a unique analytic continuation to Re n > 1 and that its

first derivative at n = 1 gives the required entropy:

SA = − lim
n→1

∂

∂n

Zn(A)

Zn
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CFT: a remind

A physical systems at a quantum critical point is scale invariant

〈φ(r1)φ(r2)〉 = b2∆φ〈φ(br1)φ(br2)〉 〈φ(r1)φ(r2)〉 = |r1 − r2|−2∆φ

A Hamiltonian that is invariant under translations, rotations, and scaling
transformations has usually the symmetry of the larger conformal group
defined as the set of transformations that do not change the angles.

In 2D the consequences are extraordinary:

all the analytic functions w(z) are conformal

〈φ(z1)φ(z2)〉 = |w ′(z1)w
′(z2)|2∆φ〈φ(w(z1))φ(w(z2))〉

Under an arbitrary transformation xµ → xµ + εµ

S → S + δS , with δS =

Z
d2xTµν∂µεν

Under a conformal
transformation w → z

T (w) =

„
dz

dw

«2

T (z)+
c

12

z ′′′z ′ − 3/2z ′′
2

z ′2

YOU DON’T NEED THIS!
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Entropy and CFT

Single interval (u, v). We need Zn/Z
n = 〈0|0〉Rn ⇒ compute 〈T (w)〉Rn

w → ζ = w−u
w−v

; ζ → z = ζ1/n⇒ w → z =
“

w−u
w−v

”1/n

〈T (z)〉C = 0 ⇒ 〈T (w)〉Rn =
c(1− (1/n)2)

24

(v − u)2

(w − u)2(w − v)2

To be compared with the
Conformal Ward identities

〈T (w)Φn(u)Φ−n(v)〉C
〈Φn(u)Φ−n(v)〉C

=
∆Φ(v − u)2

(w − u)2(w − v)2

Zn/Z
n transforms under conformal transformations as nth power of the two

point function of a (fake) primary field on the plane with scaling dimension

∆Φ = ∆Φ = c
24

`
1− 1

n2

´
⇒ Tr ρn

A =
Zn

Z n
= cn

“v − u

a

”−(c/6)(n−1/n)

Finally with the replica trick (v − u = `)

SA =
c

3
ln
`

a
+ c ′1
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Generalization I

Finite temperature: map the plane into a cylinder

w → w ′ = β
2π lnw

SA =
c

3
log

„
β

πa
sinh

π`

β

«
+c ′1 '

8>>><>>>:
πc

3

`

β
, `� β classical extensive

c

3
log

`

a
, `� β T = 0 non− extensive

see also [Korepin ’04]

Finite size: orient the branch cut perpendicular to the axis
β → L and w → iw

SA =
c

3
log

(
L

πa
sin

π`

L

)
+ c ′1

It is symmetric under ` → L− `. It is maximal when ` = L/2
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Generalization II

Open boundaries: semi-infinite system

If L = ∞ and T = 0, it is

uniformised by z =
`

w−i`
w+i`

´1/n

Tr ρn
A ' c̃n

(
2`

a

)(c/12)(n−1/n)

⇒ SA '
c

6
log

2`

a
+ c̃ ′1

at finite temperature β−1

SA(β) ' c

6
log

„
β

πa
sinh

2π`

β

«
+ c̃ ′1

and finite size

SA(L) ' c

6
log

„
2L

πa
sin

π`

L

«
+ c̃ ′1

c̃ ′1 − c ′1/2 = ln g boundary entropy
[Affleck, Ludwig] [From Laflorencie et al ’06]
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Generalization III

General case

SA =
c

3

0@X
j≤k

log
vk − uj

a
−

X
j<k

log
uk − uj

a
−

X
j<k

log
vk − vj

a

1A + Nc ′1

A similar expression holds in the case of a boundary, with half of the wi

corresponding to the image points

Non-critical systems
Following the line of the c-theorem proof we showed

SA = Ac

6
log

ξ

a

A is the number of boundary points
between A and B (1D area).

EG: Ising model in a
transverse magnetic field
with corner transfer matrix

For λ → 1
S ' 1

12 log ξ
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Dynamics of Entanglement [John Cardy talk]

How does entanglement evolve from a state that is not an eigenstate?

Example

Ising model in a transverse field with H(h):

Prepare the system in a pure state |ψ0〉 (ground state of H(h0))

Let it evolve with H(h) with h 6= h0 (at t = 0 h has been quenched)

|ψ(t)〉 = e−iH(h)t |ψ0〉 ρA(t) = TrB e−iH(h)t |ψ0〉〈ψ0|e iH(h)t

Clearly, the system does not relax to the ground state

How can we study this problem with QFT?
〈ψ′′(x ′′)|ρ(t)|ψ′(x ′)〉 = Z−1

1 〈ψ′′(x ′′)|e−itH−εH |ψ0(x)〉〈ψ0(x)|e+itH−εH |ψ′(x ′)〉
e−εH makes the path integral convergent!
Is it justified to send it to 0?
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CFT result and horizon

With the “usual′′ mapping and for t, `� τ0 SA(t) '

8>>><>>>:
πct

6τ0
t < `/2

πc `

12τ0
t > `/2

SA(t) increases linearly until it saturates at t = `/2: horizon effect

SA is proportional to the number of particles
that emitted from a region of size τ0 reach one
A and the other B.

Generalizable to the case when A consists of several disjoint intervals. SA(t) is
not always non-decreasing:

EG, A = regular array of intervals SA oscillates in a saw-tooth fashion
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Lattice calculation

Transverse Ising chain HI (h) = −1

2

∑
j

[σx
j σx

j+1 + hσz
j ]

Crossover always at t∗ = `/2 !!

S`(t) increases linearly with
time up to t∗ = `/2, but it does
not saturated immediately:

There are particles moving
slowly as a consequence of
vp = dEp/dp
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Local Quench [unpublished]

We physically cut a spin chain into two A and
B parts
At time t = 0 we join the two parts
How does the entanglement entropy evolve?

For long time: SA = c
3 log t

If we consider the entanglement of a slit of length ` A′ ∈ A

SA′ '

8>>><>>>:
c

3
ln t +

c

6
ln `+

c

6
ln
`− t

`+ t
t < `

c

3
ln ` t > `

If the slit has the joining point inside:

Everything agrees with numerics by Eisler and Peschel ’07
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