Pairwise entanglement in 1d spin chains

Luigi Amico MATIS – INFM & DMFCI Università di Catania

Materials and Technologies for Information and communication Sciences

Q I S T

ERA-Pilot Roadmap :

Quantum Information Sciences & Technologies =

Outline

• General ideas.

• Part I: Entanglement & QPT

Summary at T=0

In collaboration with R. Fazio (Pisa), A. Osterloh (Hannover).

Thermal Entanglement close to QPT

In collaboration with D. Patanè (Catania).

• Part II: Entanglement & separable states in low dimensional systems

In collaboration with D. Patanè (Catania), F. Baroni, A. Fubini, V. Tognetti, P. Verrucchi (Firenze)

• Part III: Bound entanglement in spin chains (with D.

Patane' and R. Fazio).

General Ideas: Entangled Vs Not entangled states. **Example: 2 spins (or qubits)** • Pure states: $|\Psi
angle$ Separable: $|\uparrow\rangle \otimes |\downarrow\rangle = |\uparrow\downarrow\rangle$ $(|\uparrow\rangle + |\downarrow\rangle) \otimes |\uparrow\rangle = |\uparrow\uparrow\rangle + |\uparrow\downarrow\rangle$ Entangled: $|\Phi\rangle = |\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle$ • <u>Mixed states:</u> $\sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}|$ Separable: $\rho = \sum_{i} p_{i} \rho_{i}^{A} \otimes \rho_{i}^{B}$ Entangled: $(1-p)|\Phi\rangle\langle\Phi|+p|\uparrow\uparrow\rangle\langle\uparrow\uparrow|$ $0 \le p < 1$

Classical Vs quantum correlations

• A separable state (not entangled) may contain classical correlation:

$$\rho = \sum_{i} p_{i}(|A,B\rangle\langle B,A|)_{i}$$

= $\frac{2}{4}|\downarrow\downarrow\rangle\langle\downarrow\downarrow| + \frac{1}{4}|\uparrow\downarrow\rangle\langle\uparrow\downarrow| + \frac{1}{4}|\uparrow\uparrow\rangle\langle\uparrow\uparrow|$

Measure of B $B = |\downarrow\rangle$

$$\rho = \frac{2}{3} |\downarrow\downarrow\rangle \langle\downarrow\downarrow| + \frac{1}{3} |\uparrow\downarrow\rangle \langle\uparrow\downarrow|$$

Once $B = |\downarrow\rangle$, the probability to find $A = |\downarrow\rangle$ is double than the probability to find $A = |\uparrow\rangle$: **A and B are classically correlated.**

General aim:

Quantify Entanglement in many body systems.

Possible questions:

- Entanglement as a resource (q-compution....)
- Correlation Vs Entanglement
- Entanglement and Critical phenomena?

QPT in 1d-Anisotropic XY models

$$H = J \sum_{i} (1+\gamma) \sigma_{i}^{x} \sigma_{i+1}^{x} + (1-\gamma) \sigma_{i}^{y} \sigma_{i+1}^{y} - h \sigma_{i}^{z}$$

- Completely integrable.
- Quantum phase transition at $a_c = 1$.

$$a = \frac{2h}{J}$$

Lieb, Schulz, Mattis Ann. Phys.NY 16, 407 (1961); Barouch, McCoy, Dresden PRA 2, 1075 (1970); Barouch, McCoy PRA 3, 786 (1971); Pfeuty Ann. Phys.NY 57, 79 (1970). Cross-over phase diagram for the quantum Ising models

Part I: Entanglement close to QPT

Possible questions:

- Correlation Vs Entanglement?
- Critical properties ?
- Universality ?

Preskill 2000 Arnesen, Bose, Vedral 2001 Gunlicke, Bose, Kendon, Vedral 2001

Selected results at T=O

• Second order QPT are marked by <u>singularities in the first derivative</u> of a given entanglement measure; first order QPT are marked by <u>anomalies in the entanglement itself.</u>

Wu, Sarandy, Lidar Phys. Rev. Lett. 2004; Wu, Sarandy, Lidar, Sham 2005. Yang 2005; Gu, Tian, Lin 2005. See also: Verstrate, Popp, Cirac 2004; Jin, Korepin 2004.

• Multipartite entanglement:

QPT characterized by a maximum of the multipartite/bipartite entanglement ratio.

Critical Block-entanglement is universal: ~(c/3) logL.

(Vidal, Latorre, Rico, Kitaev 2003; Calabrese and Cardy 2004-06; Its, Jin, Korepin 2005).

Localizable Entanglement: 'topological order' (Haldane phase); critical diverging

length of the localizable entang. lenght.

(Popp, Verstraete, Cirac, Martin-Delgado 2004)

 $H = H_0 + \sum_l \lambda_l A_l$, The reduced density operator is a function of correlators. Then

 $M(\langle A_l \rangle) = M\left(\frac{\partial E_{gs}}{\partial \lambda_l}\right)$

Why multiparticle entanglement?

Quantum Phase Transition:

Enhancement of multiparticle entanglement

G. Vidal et al., Phys.Rev.Lett. 90, 227902 (2003); T. Roscilde et al., Phys. Rev. Lett. 93, 167203 (2004).

$$S = \frac{c}{3} \log L$$

Simulations of strongly correlated systems:

 Failure DMRG for unbounded block entangl. (i.e. 1D critical systems or D>2).

 New algorithms taking into account long range entanglement (i.e. PEPS, graph states..)
 G. Vidal Phys. Rev. Lett. 93, 040502 (2004); F. Verstraete and J. I. Cirac; cond-mat/0407066; G. Vidal, cond-mat/0512165; S. Anders, Phys. Rev. Lett. 97, 107206 (2006).

Entanglement crossover

• How is the entanglement affected by the combinations of thermal and quantum fluctuations?

Temperature is a strong effect in the quantum critical region and around T_M

Explanation of Kurman's result

h

$$C_{r} = 2\max\{0, C_{r}^{I}, C_{r}^{II}\}$$

$$C_{r}^{I} = \left|g_{r}^{xx} + g_{r}^{yy}\right| - \sqrt{\left(\frac{1}{4} + g_{r}^{zz}\right)^{2} - M_{z}^{2}}$$

$$C_{r}^{II} = \left|g_{r}^{xx} - g_{r}^{yy}\right| + g_{r}^{zz} - \frac{1}{4}$$

' ↓↑>

 $\uparrow\uparrow\rangle +$

1

()

()

Long range reshuffling of the ground states switching from parallel to antiparallel entanglement.

$$\begin{array}{l} \textbf{blue} \textbf{blue$$

Part III: Multipartite entanglement in spin chains

Motivations: analysis of one-tangle and block entropies reveal **multipartite entanglement....BUT**: *How is it shared*?

•**Strategy**: Search for configurations / regimes where the two-particle entanglement is known to vanish.

Example for three spin entanglement:

i) If the spin are distant enough then there is *no two-spin* entanglement....

a) . ii) Then, pairwise entanglement between suitably distant blocks is a measure of genuine multiparticle entanglement.

Patane', Fazio, Amico, arXiv:0705.0386

Multi spin entanglement in the ground state of the quantum XY models

Spin/block entanglement without spin-spin entanglement for distance d=4.

Amico, Fazio, Patanè 2007

Bound Entanglement in the ground state of the quantum XY model

The ent. is bound: isn't possible to distill maximally entangled (pure) states between parts of the system in a mixed state; neither with local operation nor with classical communications, and not even asymptotically with infinite supply of copies of the state.

It can be useful in certain protocols.

Bound entanglement in quantum spin chains at finite temperature

...T.T.T.T.T. Next C1 ...T.T.T.T.T. Ncentr Bound Entanglement.

FIG. 3: Entanglement shared in a block of the three adjacent spins. We consider $\gamma = 1$. In this case only nearest neighbor and next nearest neighbor spins are entangled (hence R = 2) at T = 0 [3, 4]. The lines in the T - h plane indicate the temperatures at which the corresponding type of entanglement disappears. In the marked region $T_{N_{Ext}} < T < T_{N_{Centr}}$ BE is present.

Conclusions

- Entanglement is sensitive to quantum criticality: similarities & differences with the ordinary correlators.
- Entanglement Crossover: quantum distilled of the mechanism bringing quantum effects up to finite temperatures.
- New light on traditional problems in condensed matter (Es: Kurman factorization; string-order parameter...).
- Entanglement propagation.
- Bound-entanglement in spin chains.

Amico, Fazio, Osterloh, and Vedral, quant-ph/0703044; to be published in Rev. Mod. Phys.